The word *algebra* comes from *ilm al-jabr w'al muqabala*, the title of a book written in the ninth century by the Arabian mathematician al-Khwarizimi. The title has been translated as the science of restoration and reduction, which means transposing and combining similar terms (of an equation). The Latin transliteration of al-jabr led to the name of the branch of mathematics we now call algebra.

In algebra we use symbols or letters—such as a, b, c, d, x, y—to denote arbitrary numbers. This general nature of algebra is illustrated by the many formulas used in science and industry. As you proceed through this text and go on either to more advanced courses in mathematics or to fields that employ mathematics, you will become more and more aware of the importance and the power of algebraic techniques.
1.1

Real Numbers

Real numbers are used throughout mathematics, and you should be acquainted with symbols that represent them, such as

\[1, \quad 73, \quad -5, \quad \frac{49}{12}, \quad \sqrt{2}, \quad 0, \quad \sqrt{-85}, \quad 0.33333\ldots, \quad 596.25, \]

and so on. The positive integers, or natural numbers, are

\[1, \quad 2, \quad 3, \quad 4, \quad \ldots \]

The whole numbers (or nonnegative integers) are the natural numbers combined with the number 0. The integers are often listed as follows:

\[\ldots, \quad -4, \quad -3, \quad -2, \quad -1, \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad \ldots \]

Throughout this text lowercase letters \(a, b, c, x, y, \ldots \) represent arbitrary real numbers (also called variables). If \(a \) and \(b \) denote the same real number, we write \(a = b \), which is read “\(a \) is equal to \(b \)” and is called an equality. The notation \(a \neq b \) is read “\(a \) is not equal to \(b \).”

If \(a, b, \) and \(c \) are integers and \(c = ab \), then \(a \) and \(b \) are factors, or divisors, of \(c \). For example, since

\[6 = 2 \cdot 3 = (-2)(-3) = 1 \cdot 6 = (-1)(-6), \]

we know that \(1, -1, 2, -2, 3, -3, 6, \) and \(-6 \) are factors of 6.

A positive integer \(p \) different from 1 is prime if its only positive factors are 1 and \(p \). The first few primes are 2, 3, 5, 7, 11, 13, 17, and 19. The Fundamental Theorem of Arithmetic states that every positive integer different from 1 can be expressed as a product of primes in one and only one way (except for order of factors). Some examples are

\[12 = 2 \cdot 2 \cdot 3, \quad 126 = 2 \cdot 3 \cdot 3 \cdot 7, \quad 540 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5. \]

A rational number is a real number that can be expressed in the form \(\frac{a}{b} \), where \(a \) and \(b \) are integers and \(b \neq 0 \). Note that every integer \(a \) is a rational number, since it can be expressed in the form \(a/1 \). Every real number can be expressed as a decimal, and the decimal representations for rational numbers are either terminating or nonterminating and repeating. For example, we can show by using the arithmetic process of division that

\[\frac{5}{4} = 1.25 \quad \text{and} \quad \frac{177}{35} = 3.2181818\ldots, \]

where the digits 1 and 8 in the representation of \(\frac{177}{35} \) repeat indefinitely (sometimes written 3.2\(\overline{18} \)).
Real numbers that are not rational are **irrational numbers**. Decimal representations for irrational numbers are always **nonterminating and nonrepeating**. One common irrational number, denoted by \(\pi \), is the ratio of the circumference of a circle to its diameter. We sometimes use the notation \(\pi \approx 3.1416 \) to indicate that \(\pi \) **is approximately equal to** 3.1416.

There is no **rational** number \(b \) such that \(b^2 = 2 \), where \(b^2 \) denotes \(b \cdot b \). However, there is an **irrational** number, denoted by \(\sqrt{2} \) (the **square root** of 2), such that \((\sqrt{2})^2 = 2 \).

The system of **real numbers** consists of all rational and irrational numbers. Relationships among the types of numbers used in algebra are illustrated in the diagram in Figure 1, where a line connecting two rectangles means that the numbers named in the higher rectangle include those in the lower rectangle. The complex numbers, discussed in Section 2.4, contain all real numbers.

Figure 1 Types of numbers used in algebra

The real numbers are **closed relative to the operation of addition** (denoted by \(+ \)); that is, to every pair \(a, b \) of real numbers there corresponds exactly one real number \(a + b \) called the **sum** of \(a \) and \(b \). The real numbers are also **closed relative to multiplication** (denoted by \(\cdot \)); that is, to every pair \(a, b \) of real numbers there corresponds exactly one real number \(a \cdot b \) (also denoted by \(ab \)) called the **product** of \(a \) and \(b \).

Important properties of addition and multiplication of real numbers are listed in the following chart.
Since and are always equal, we may use to denote this real number. We use for either or . Similarly, if four or more real numbers , , , are added or multiplied, we may write for their sum and for their product, regardless of how the numbers are grouped or interchanged.

The distributive properties are useful for finding products of many types of expressions involving sums. The next example provides one illustration.

EXAMPLE 1 Using distributive properties

If , , , and denote real numbers, show that

\((p + q)(r + s) = pr + ps + qr + qs.\)

SOLUTION We use both of the distributive properties listed in (9) of the preceding chart:

\[(p + q)(r + s) = p(r + s) + q(r + s)\]

second distributive property, with \(c = r + s\)

\[= (pr + ps) + (qr + qs)\]

first distributive property

\[= pr + ps + qr + qs\]

remove parentheses

Properties of Real Numbers

<table>
<thead>
<tr>
<th>Terminology</th>
<th>General case</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Addition is commutative.</td>
<td>(a + b = b + a)</td>
<td>Order is immaterial when adding two numbers.</td>
</tr>
<tr>
<td>(2) Addition is associative.</td>
<td>(a + (b + c) = (a + b) + c)</td>
<td>Grouping is immaterial when adding three numbers.</td>
</tr>
<tr>
<td>(3) 0 is the additive identity.</td>
<td>(a + 0 = a)</td>
<td>Adding 0 to any number yields the same number.</td>
</tr>
<tr>
<td>(4) (-a) is the additive inverse, or negative, of (a).</td>
<td>(a + (-a) = 0)</td>
<td>Adding a number and its negative yields 0.</td>
</tr>
<tr>
<td>(5) Multiplication is commutative.</td>
<td>(ab = ba)</td>
<td>Order is immaterial when multiplying two numbers.</td>
</tr>
<tr>
<td>(6) Multiplication is associative.</td>
<td>(a(bc) = (ab)c)</td>
<td>Grouping is immaterial when multiplying three numbers.</td>
</tr>
<tr>
<td>(7) 1 is the multiplicative identity.</td>
<td>(a \cdot 1 = a)</td>
<td>Multiplying any number by 1 yields the same number.</td>
</tr>
<tr>
<td>(8) If (a \neq 0), (\frac{1}{a}) is the multiplicative inverse, or reciprocal, of (a).</td>
<td>(a \left(\frac{1}{a}\right) = 1)</td>
<td>Multiplying a nonzero number by its reciprocal yields 1.</td>
</tr>
<tr>
<td>(9) Multiplication is distributive over addition.</td>
<td>(a(b + c) = ab + ac) and ((a + b)c = ac + bc)</td>
<td>Multiplying a number and a sum of two numbers is equivalent to multiplying each of the two numbers by the number and then adding the products.</td>
</tr>
</tbody>
</table>
The following are basic properties of equality.

<table>
<thead>
<tr>
<th>Properties of Equality</th>
<th>If $a = b$ and c is any real number, then</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) $a + c = b + c$</td>
</tr>
<tr>
<td></td>
<td>(2) $ac = bc$</td>
</tr>
</tbody>
</table>

Properties 1 and 2 state that the same number may be added to both sides of an equality, and both sides of an equality may be multiplied by the same number. We will use these properties extensively throughout the text to help find solutions of equations.

The next result can be proved.

<table>
<thead>
<tr>
<th>Products Involving Zero</th>
<th>(1) $a \cdot 0 = 0$ for every real number a.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2) If $ab = 0$, then either $a = 0$ or $b = 0$.</td>
</tr>
</tbody>
</table>

When we use the word or as we do in (2), we mean that at least one of the factors a and b is 0. We will refer to (2) as the zero factor theorem in future work.

Some properties of negatives are listed in the following chart.

<table>
<thead>
<tr>
<th>Properties of Negatives</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) $-(-a) = a$</td>
<td>$-(-3) = 3$</td>
</tr>
<tr>
<td>(2) $(-a)b = -(ab) = a(-b)$</td>
<td>$(-2)3 = -(2 \cdot 3) = 2(-3)$</td>
</tr>
<tr>
<td>(3) $(-a)(-b) = ab$</td>
<td>$(-2)(-3) = 2 \cdot 3$</td>
</tr>
<tr>
<td>(4) $(-1)a = -a$</td>
<td>$(-1)3 = -3$</td>
</tr>
</tbody>
</table>

The reciprocal $\frac{1}{a}$ of a nonzero real number a is often denoted by a^{-1}, as in the next chart.
Note that if \(a \neq 0 \), then

\[
\frac{1}{a} = a^{-1}.
\]

The operations of subtraction \((-\)) and division \(\div\) are defined as follows.

Notation for Reciprocals

<table>
<thead>
<tr>
<th>Definition</th>
<th>Illustrations</th>
</tr>
</thead>
</table>
| If \(a \neq 0 \), then \(a^{-1} = \frac{1}{a} \). | \(2^{-1} = \frac{1}{2} \)
\(\left(\frac{3}{4} \right)^{-1} = \frac{1}{3/4} = \frac{4}{3} \) |

Note that if \(a \neq 0 \), then

\[
a \cdot a^{-1} = a \left(\frac{1}{a} \right) = 1.
\]

The operations of **subtraction** \((-\)) and **division** \(\div\) are defined as follows.

Subtraction and Division

<table>
<thead>
<tr>
<th>Definition</th>
<th>Meaning</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a - b = a + (-b))</td>
<td>To subtract one number from another, add the negative.</td>
<td>(3 - 7 = 3 + (-7))</td>
</tr>
<tr>
<td>(a \div b = a \cdot \left(\frac{1}{b} \right) = a \cdot b^{-1}; b \neq 0)</td>
<td>To divide one number by a nonzero number, multiply by the reciprocal.</td>
<td>(3 \div 7 = 3 \cdot \left(\frac{1}{7} \right) = 3 \cdot 7^{-1})</td>
</tr>
</tbody>
</table>

We use either \(a/b \) or \(\frac{a}{b} \) for \(a \div b \) and refer to \(a/b \) as the **quotient of** \(a \) **and** \(b \) or the **fraction** \(a \) **over** \(b \). The numbers \(a \) and \(b \) are the **numerator** and **denominator**, respectively, of \(a/b \). Since 0 has no multiplicative inverse, \(a/b \) is not defined if \(b = 0 \); that is, **division by zero is not defined**. It is for this reason that the real numbers are not closed relative to division. Note that

\[
1 \div b = \frac{1}{b} = b^{-1} \quad \text{if} \quad b \neq 0.
\]

The following properties of quotients are true, provided all denominators are nonzero real numbers.
Real numbers may be represented by points on a line \(l \) such that to each real number \(a \) there corresponds exactly one point on \(l \) and to each point \(P \) on \(l \) there corresponds one real number. This is called a one-to-one correspondence. We first choose an arbitrary point \(O \), called the origin, and associate with it the real number 0. Points associated with the integers are then determined by laying off successive line segments of equal length on either side of \(O \), as illustrated in Figure 2. The point corresponding to a rational number, such as \(\frac{23}{5} \), is obtained by subdividing these line segments. Points associated with certain irrational numbers, such as \(\sqrt{2} \), can be found by construction (see Exercise 45).

Figure 2

The number \(a \) that is associated with a point \(A \) on \(l \) is the coordinate of \(A \). We refer to these coordinates as a coordinate system and call \(l \) a coordinate line or a real line. A direction can be assigned to \(l \) by taking the positive direction to the right and the negative direction to the left. The positive direction is noted by placing an arrowhead on \(l \), as shown in Figure 2.
The numbers that correspond to points to the right of O in Figure 2 are **positive real numbers**. Numbers that correspond to points to the left of O are **negative real numbers**. The real number 0 is neither positive nor negative.

Note the difference between a negative real number and the negative of a real number. In particular, the negative of a real number a can be positive. For example, if a is negative, say $a = -3$, then the negative of a is $-a = -(−3) = 3$, which is positive. In general, we have the following relationships.

Relationships Between a and $−a$

1. If a is positive, then $−a$ is negative.
2. If a is negative, then $−a$ is positive.

In the following chart we define the notions of **greater than** and **less than** for real numbers a and b. The symbols $>$ and $<$ are **inequality signs**, and the expressions $a > b$ and $a < b$ are called (strict) **inequalities**.

Greater Than or Less Than

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > b$</td>
<td>$a - b$ is positive</td>
<td>a is greater than b</td>
</tr>
<tr>
<td>$a < b$</td>
<td>$a - b$ is negative</td>
<td>a is less than b</td>
</tr>
</tbody>
</table>

If points A and B on a coordinate line have coordinates a and b, respectively, then $a > b$ is equivalent to the statement “A is to the right of B,” whereas $a < b$ is equivalent to “A is to the left of B.”

ILLUSTRATION Greater Than ($>$) and Less Than ($<$)

- $5 > 3$, since $5 - 3 = 2$ is positive.
- $-6 < -2$, since $-6 - (-2) = -6 + 2 = -4$ is negative.
- $\frac{1}{3} > 0.33$, since $\frac{1}{3} - 0.33 = \frac{1}{3} - \frac{33}{100} = \frac{1}{300}$ is positive.
- $7 > 0$, since $7 - 0 = 7$ is positive.
- $-4 < 0$, since $-4 - 0 = -4$ is negative.

The next law enables us to compare, or **order**, any two real numbers.

Trichotomy Law

If a and b are real numbers, then exactly one of the following is true:

$$a = b, \quad a > b, \quad \text{or} \quad a < b$$
We refer to the **sign** of a real number as positive if the number is positive, or negative if the number is negative. Two real numbers have the **same sign** if both are positive or both are negative. The numbers have **opposite signs** if one is positive and the other is negative. The following results about the signs of products and quotients of two real numbers \(a \) and \(b \) can be proved using properties of negatives and quotients.

The **converses** of the laws of signs are also true. For example, if a quotient is negative, then the numerator and denominator have opposite signs.

The notation \(a \geq b \), read “\(a \) is greater than or equal to \(b \),” means that either \(a > b \) or \(a = b \) (but not both). For example, \(a^2 \geq 0 \) for every real number \(a \). The symbol \(a \leq b \), which is read “\(a \) is less than or equal to \(b \),” means that either \(a < b \) or \(a = b \). Expressions of the form \(a \geq b \) and \(a \leq b \) are called **nonstrict inequalities**, since \(a \) may be equal to \(b \). As with the equality symbol, we may negate any inequality symbol by putting a slash through it—that is, \(\not\geq \) means not greater than.

An expression of the form \(a < b < c \) is called a **continued inequality** and means that both \(a < b \) and \(b < c \); we say “\(b \) is between \(a \) and \(c \).” Similarly, the expression \(c > b > a \) means that both \(c > b \) and \(b > a \).

Illustration

Ordering Three Real Numbers

\[
\begin{align*}
1 &< 5 < \frac{11}{2} \\
-4 &< \frac{2}{3} < \sqrt{2} \\
3 &> -6 > -10
\end{align*}
\]

There are other types of inequalities. For example, \(a < b \leq c \) means both \(a < b \) and \(b \leq c \). Similarly, \(a \leq b < c \) means both \(a \leq b \) and \(b < c \). Finally, \(a \leq b \leq c \) means both \(a \leq b \) and \(b \leq c \).

Example 2 Determining the sign of a real number

If \(x > 0 \) and \(y < 0 \), determine the sign of \(\frac{x}{y} + \frac{y}{x} \).

Solution Since \(x \) is a positive number and \(y \) is a negative number, \(x \) and \(y \) have opposite signs. Thus, both \(x/y \) and \(y/x \) are negative. The sum of two negative numbers is a negative number, so

\[
\text{the sign of } \frac{x}{y} + \frac{y}{x} \text{ is negative.}
\]
If \(a \) is an integer, then it is the coordinate of some point \(A \) on a coordinate line, and the symbol \(|a| \) denotes the number of units between \(A \) and the origin, without regard to direction. The nonnegative number \(|a| \) is called the absolute value of \(a \). Referring to Figure 3, we see that for the point with coordinate we have \(|-4| = 4 \). Similarly, \(|4| = 4 \). In general, if \(a \) is negative, we change its sign to find \(|-a| \); if \(a \) is nonnegative, then \(|a| = a \). The next definition extends this concept to every real number.

Definition of Absolute Value

The absolute value of a real number \(a \), denoted by \(|a| \), is defined as follows.

1. If \(a \geq 0 \), then \(|a| = a \).
2. If \(a < 0 \), then \(|a| = -a \).

Since \(a \) is negative in part (2) of the definition, \(-a \) represents a positive real number. Some special cases of this definition are given in the following illustration.

ILLUSTRATION

The Absolute Value Notation \(|a| \)

- \(|3| = 3 \), since \(3 > 0 \).
- \(|-3| = -(-3) \), since \(-3 < 0 \). Thus, \(|-3| = 3 \).
- \(|2 - \sqrt{2}| = 2 - \sqrt{2} \), since \(2 - \sqrt{2} > 0 \).
- \(|\sqrt{2} - 2| = -(\sqrt{2} - 2) \), since \(\sqrt{2} - 2 < 0 \). Thus, \(|\sqrt{2} - 2| = 2 - \sqrt{2} \).

In the preceding illustration, \(|3| = |-3| \) and \(|2 - \sqrt{2}| = |\sqrt{2} - 2| \). In general, we have the following:

\[|a| = |-a| \text{, for every real number } a \]

Example 3 Removing an absolute value symbol

If \(x < 1 \), rewrite \(|x - 1| \) without using the absolute value symbol.

Solution If \(x < 1 \), then \(x - 1 < 0 \); that is, \(x - 1 \) is negative. Hence, by part (2) of the definition of absolute value,

\[|x - 1| = -(x - 1) = -x + 1 = 1 - x. \]

We shall use the concept of absolute value to define the distance between any two points on a coordinate line. First note that the distance between the points with coordinates 2 and 7, shown in Figure 4, equals 5 units. This distance is the difference obtained by subtracting the smaller (leftmost) coordinate from the larger (rightmost) coordinate \((7 - 2 = 5) \). If we use absolute values, then, since \(|7 - 2| = |2 - 7| \), it is unnecessary to be concerned about the order of subtraction. This fact motivates the next definition.
Let \(a \) and \(b \) be the coordinates of two points \(A \) and \(B \), respectively, on a coordinate line. The **distance between \(A \) and \(B \)**, denoted by \(d(A, B) \), is defined by
\[
d(A, B) = |b - a|.
\]

The number \(d(A, B) \) is the length of the line segment \(AB \).

Since \(d(B, A) = |a - b| \) and \(|b - a| = |a - b| \), we see that
\[
d(A, B) = d(B, A).
\]

Note that the distance between the origin \(O \) and the point \(A \) is
\[
d(O, A) = |a - 0| = |a|,
\]
which agrees with the geometric interpretation of absolute value illustrated in Figure 4. The formula \(d(A, B) = |b - a| \) is true regardless of the signs of \(a \) and \(b \), as illustrated in the next example.

Example 4 Finding distances between points

Let \(A, B, C, \) and \(D \) have coordinates \(-5, -3, 1, \) and \(6 \), respectively, on a coordinate line, as shown in Figure 5. Find \(d(A, B), d(C, B), d(O, A), \) and \(d(C, D) \).

Solution Using the definition of the distance between points on a coordinate line, we obtain the distances:
\[
\begin{align*}
d(A, B) &= | -3 - (-5) | = | -3 + 5 | = | 2 | = 2 \\
d(C, B) &= | -3 - 1 | = | -4 | = 4 \\
d(O, A) &= | -5 - 0 | = | -5 | = 5 \\
d(C, D) &= | 6 - 1 | = | 5 | = 5
\end{align*}
\]

The concept of absolute value has uses other than finding distances between points; it is employed whenever we are interested in the magnitude or numerical value of a real number without regard to its sign.

In the next section we shall discuss the **exponential notation** \(a^n \), where \(a \) is a real number (called the base) and \(n \) is an integer (called an exponent). In particular, for base \(10 \) we have
\[
10^0 = 1, \quad 10^1 = 10, \quad 10^2 = 10 \cdot 10 = 100, \quad 10^3 = 10 \cdot 10 \cdot 10 = 1000,
\]
and so on. For negative exponents we use the reciprocal of the corresponding positive exponent, as follows:
\[
10^{-1} = \frac{1}{10^1} = \frac{1}{10}, \quad 10^{-2} = \frac{1}{10^2} = \frac{1}{100}, \quad 10^{-3} = \frac{1}{10^3} = \frac{1}{1000}
\]
We can use this notation to write any finite decimal representation of a real number as a sum of the following type:

\[
437.56 = 4(100) + 3(10) + 7(1) + 5\left(\frac{1}{10}\right) + 6\left(\frac{1}{100}\right) \\
= 4\times10^2 + 3\times10^1 + 7\times10^0 + 5\times10^{-1} + 6\times10^{-2}
\]

In the sciences it is often necessary to work with very large or very small numbers and to compare the relative magnitudes of very large or very small quantities. We usually represent a large or small positive number \(a\) in \textit{scientific form}, using the symbol \(\times\) to denote multiplication.

The distance a ray of light travels in one year is approximately 5,900,000,000,000 miles. This number may be written in scientific form as \(5.9 \times 10^{12}\). The positive exponent 12 indicates that the decimal point should be moved 12 places to the right. The notation works equally well for small numbers. The weight of an oxygen molecule is estimated to be 0.000 000 000 000 000 000 053 gram, or, in scientific form, \(5.3 \times 10^{-23}\) gram. The negative exponent indicates that the decimal point should be moved 23 places to the left.

Illustration

| Scientific Form |
|----------------|---|
| \(a = c \times 10^n\), where \(1 \leq c < 10\) and \(n\) is an integer |

Many calculators use scientific form in their display panels. For the number \(c \times 10^n\), the 10 is suppressed and the exponent is often shown preceded by the letter E. For example, to find \((4,500,000)^2\) on a scientific calculator, we could enter the integer 4,500,000 and press the \(\frac{x^2}{x^2}\) (or squaring) key, obtaining a display similar to one of those in Figure 6. We would translate this as \(2.025 \times 10^{13}\). Thus,

\[
(4,500,000)^2 = 20,250,000,000,000.
\]

Calculators may also use scientific form in the entry of numbers. The user’s manual for your calculator should give specific details.

Before we conclude this section, we should briefly consider the issue of rounding off results. Applied problems often include numbers that are ob-
tained by various types of measurements and, hence, are approximations to exact values. Such answers should be rounded off, since the final result of a calculation cannot be more accurate than the data that have been used. For example, if the length and width of a rectangle are measured to two-decimal-place accuracy, we cannot expect more than two-decimal-place accuracy in the calculated value of the area of the rectangle. For purely mathematical work, if values of the length and width of a rectangle are given, we assume that the dimensions are exact, and no rounding off is required.

If a number \(a \) is written in scientific form as \(a \times 10^b \) for \(1 \leq c < 10 \) and if \(c \) is rounded off to \(k \) decimal places, then we say that \(a \) is accurate (or has been rounded off) to \(k \) significant figures, or digits. For example, 37.2638 rounded to 5 significant figures is \(37.264 \), or 37.3; and to 1 significant figure, \(4 \times 10^1 \), or 40.

1.1 Exercises

Exer. 1–2: If \(x < 0 \) and \(y > 0 \), determine the sign of the real number.

1. (a) \(xy \)
 (b) \(x^2 \)
 (c) \(\frac{x}{y} + x \)
 (d) \(y - x \)

2. (a) \(\frac{x}{y} \)
 (b) \(xy^2 \)
 (c) \(\frac{x - y}{xy} \)
 (d) \(y(y - x) \)

Exer. 3–6: Replace the symbol \(\square \) with either \(< \), \(> \), or \(= \) to make the resulting statement true.

3. (a) \(-7 \square -4 \)
 (b) \(\frac{\pi}{2} \square 1.57 \)
 (c) \(\sqrt{225} \square 15 \)

4. (a) \(-3 \square -5 \)
 (b) \(\frac{\pi}{4} \square 0.8 \)
 (c) \(\sqrt{289} \square 17 \)

5. (a) \(\frac{1}{11} \square 0.09 \)
 (b) \(\frac{2}{3} \square 0.6666 \)
 (c) \(\frac{22}{7} \square \pi \)

6. (a) \(\frac{1}{7} \square 0.143 \)
 (b) \(\frac{5}{6} \square 0.833 \)
 (c) \(\sqrt{2} \square 1.4 \)

Exer. 7–8: Express the statement as an inequality.

7. (a) \(x \) is negative.
 (b) \(y \) is nonnegative.
 (c) \(q \) is less than or equal to \(\pi \).
 (d) \(d \) is between 4 and 2.
 (e) \(t \) is not less than 5.
 (f) The negative of \(z \) is not greater than 3.
 (g) The quotient of \(p \) and \(q \) is at most 7.
 (h) The reciprocal of \(w \) is at least 9.
 (i) The absolute value of \(x \) is greater than 7.

8. (a) \(b \) is positive.
 (b) \(s \) is nonpositive.
 (c) \(w \) is greater than or equal to \(-4 \).
 (d) \(c \) is between \(\frac{1}{5} \) and \(\frac{1}{3} \).
 (e) \(p \) is not greater than \(-2 \).
 (f) The negative of \(m \) is not less than \(-2 \).
 (g) The quotient of \(r \) and \(s \) is at least \(\frac{1}{5} \).
 (h) The reciprocal of \(f \) is at most 14.
 (i) The absolute value of \(x \) is less than 4.

Exer. 9–14: Rewrite the number without using the absolute value symbol, and simplify the result.

9. (a) \(| -3 - 2 | \)
 (b) \(| -5 - 6 | \)
 (c) \(| 7 | + | -4 | \)

10. (a) \(| -11 + 1 | \)
 (b) \(| 6 - 3 | \)
 (c) \(| 8 | + | -9 | \)

11. (a) \(| -5 | 3 - 6 | \)
 (b) \(| -6 |/(-2) | \)
 (c) \(| -7 | + | 4 | \)

12. (a) \(| 4 | 6 - 7 | \)
 (b) \(5 | -2 | \)
 (c) \(| -1 | + | -9 | \)
13 (a) $|4 - \pi|$ (b) $|\pi - 4|$ (c) $|\sqrt{2} - 1.5|$
14 (a) $|\sqrt{3} - 1.7|$ (b) $|1.7 - \sqrt{3}|$ (c) $|\frac{1}{3} - \frac{1}{3}|$

Exer. 15–18: The given numbers are coordinates of points A, B, and C, respectively, on a coordinate line. Find the distance.
(a) $d(A, B)$ (b) $d(B, C)$ (c) $d(C, B)$ (d) $d(A, C)$
15 3, 7, -5 16 -6, -2, 4 17 -9, 1, 10

Exer. 19–24: The two given numbers are coordinates of points A and B, respectively, on a coordinate line. Express the indicated statement as an inequality involving the absolute value symbol.
19 x, 7; $d(A, B)$ is less than 5
20 x, $-\sqrt{2}$; $d(A, B)$ is greater than 1
21 x, -3; $d(A, B)$ is at least 8
22 x, 4; $d(A, B)$ is at most 2
23 4, x; $d(A, B)$ is not greater than 3
24 -2, x; $d(A, B)$ is not less than 2

Exer. 25–32: Rewrite the expression without using the absolute value symbol, and simplify the result.
25 $|3 + x|$ if $x < -3$ 26 $|5 - x|$ if $x > 5$
27 $|2 - x|$ if $x < 2$ 28 $|7 + x|$ if $x \geq -7$
29 $|a - b|$ if $a < b$ 30 $|a - b|$ if $a > b$
31 $|x^2 + 4|$ 32 $|-x^2 - 1|$

Exer. 33–40: Replace the symbol \Box with either $=$ or \neq to make the resulting statement true for all real numbers a, b, c, and d, whenever the expressions are defined.
33 $\frac{ab + ac}{a} \Box b + ac$ 34 $\frac{ab + ac}{a} \Box b + c$
35 $\frac{b + c}{a} \Box \frac{b}{a} + \frac{c}{a}$ 36 $\frac{a + c}{b + d} \Box \frac{a}{b} + \frac{c}{d}$
37 $(a + b) \div c \Box a + (b \div c)$ 38 $(a - b) - c \Box a - (b - c)$
39 $\frac{a - b}{b - a} \Box -1$ 40 $-(a + b) \Box -a + b$

Exer. 41–42: Approximate the real-number expression to four decimal places.
41 (a) $3.2^2 - \sqrt{3.15}$ (b) $\sqrt{(15.6 - 1.5)^2 + (4.3 - 5.4)^2}$
42 (a) $\frac{3.42 - 1.29}{5.83 + 2.64}$ (b) π^3

Exer. 43–44: Approximate the real-number expression. Express the answer in scientific notation accurate to four significant figures.
43 (a) $\frac{1.2 \times 10^3}{3.1 \times 10^2 + 1.52 \times 10^3}$
(b) $(1.23 \times 10^{-4}) + \sqrt{4.5 \times 10^3}$
44 (a) $\sqrt{3.45 - 1.2 \times 10^4} + 10^2$ (b) $(1.791 \times 10^3) \times (9.84 \times 10^3)$

The point on a coordinate line corresponding to $\sqrt{2}$ may be determined by constructing a right triangle with sides of length 1, as shown in the figure. Determine the points that correspond to $\sqrt{3}$ and $\sqrt{5}$, respectively. (Hint: Use the Pythagorean theorem.)

Exercise 45

46 A circle of radius 1 rolls along a coordinate line in the positive direction, as shown in the figure. If point P is initially at the origin, find the coordinate of P after one, two, and ten complete revolutions.

Exercise 46

47 Geometric proofs of properties of real numbers were first given by the ancient Greeks. In order to establish the distributive property $a(b + c) = ab + ac$ for positive real numbers a, b, and c, find the area of the rectangle shown in the figure on the next page in two ways.
Rational approximations to square roots can be found using a formula discovered by the ancient Babylonians. Let x_1 be the first rational approximation for \sqrt{n}. If we let

$$x_2 = \frac{1}{2} \left(x_1 + \frac{n}{x_1} \right),$$

then x_2 will be a better approximation for \sqrt{n}, and we can repeat the computation with x_2 replacing x_1. Starting with $x_1 = \frac{3}{2}$, find the next two rational approximations for $\sqrt{3}$.

Exer. 49–50: Express the number in scientific form.

49 (a) 427,000 (b) 0.000 000 098 (c) 810,000,000

50 (a) 85,200 (b) 0.000 005 5 (c) 24,900,000

Exer. 51–52: Express the number in decimal form.

51 (a) 8.3×10^5 (b) 2.9×10^{-12} (c) 5.63×10^4

52 (a) 2.3×10^7 (b) 7.01×10^{-9} (c) 1.23×10^{10}

53 Mass of a hydrogen atom The mass of a hydrogen atom is approximately 0.000 000 000 000 000 001 7 gram. Express this number in scientific form.

54 Mass of an electron The mass of an electron is approximately 9.1×10^{-31} kilogram. Express this number in decimal form.

55 Light year In astronomy, distances to stars are measured in light years. One light year is the distance a ray of light travels in one year. If the speed of light is approximately 186,000 miles per second, estimate the number of miles in one light year.

56 Milky Way galaxy

(a) Astronomers have estimated that the Milky Way galaxy contains 100 billion stars. Express this number in scientific form.

(b) The diameter d of the Milky Way galaxy is estimated as 100,000 light years. Express d in miles. (Refer to Exercise 55.)

57 Avogadro’s number The number of hydrogen atoms in a mole is Avogadro’s number, 6.02×10^{23}. If one mole of the gas has a mass of 1.01 grams, estimate the mass of a hydrogen atom.

58 Fish population The population dynamics of many fish are characterized by extremely high fertility rates among adults and very low survival rates among the young. A mature halibut may lay as many as 2.5 million eggs, but only 0.00035% of the offspring survive to the age of 3 years. Use scientific form to approximate the number of offspring that live to age 3.

59 Frames in a movie film One of the longest movies ever made is a 1970 British film that runs for 48 hours. Assuming that the film speed is 24 frames per second, approximate the total number of frames in this film. Express your answer in scientific form.

60 Large prime numbers The number $2^{34,497} - 1$ is prime. At the time that this number was determined to be prime, it took one of the world’s fastest computers about 60 days to verify that it was prime. This computer was capable of performing 2×10^{11} calculations per second. Use scientific form to estimate the number of calculations needed to perform this computation. (More recently, in 2005, $2^{30,402,457} - 1$, a number containing 9,152,052 digits, was shown to be prime.)

61 Tornado pressure When a tornado passes near a building, there is a rapid drop in the outdoor pressure and the indoor pressure does not have time to change. The resulting difference is capable of causing an outward pressure of 1.4 lb/in2 on the walls and ceiling of the building.

(a) Calculate the force in pounds exerted on 1 square foot of a wall.

(b) Estimate the tons of force exerted on a wall that is 8 feet high and 40 feet wide.

62 Cattle population A rancher has 750 head of cattle consisting of 400 adults (aged 2 or more years), 150 yearlings, and 200 calves. The following information is known about this particular species. Each spring an adult female gives birth to a single calf, and 75% of these calves will survive the first year. The yearly survival percentages for yearlings and adults are 80% and 90%, respectively. The male-female ratio is one in all age classes. Estimate the population of each age class.

(a) next spring (b) last spring
If \(n \) is a positive integer, the exponential notation \(a^n \), defined in the following chart, represents the product of the real number \(a \) with itself \(n \) times. We refer to \(a^n \) as \(a \) to the \(n \)th power or, simply, \(a \) to the \(n \). The positive integer \(n \) is called the exponent, and the real number \(a \) is called the base.

Exponential Notation

<table>
<thead>
<tr>
<th>General case</th>
<th>Special cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^n = a \cdot a \cdot a \cdot \ldots \cdot a)</td>
<td>(a^1 = a)</td>
</tr>
<tr>
<td>(n) factors of (a)</td>
<td>(a^2 = a \cdot a)</td>
</tr>
<tr>
<td></td>
<td>(a^3 = a \cdot a \cdot a)</td>
</tr>
<tr>
<td></td>
<td>(a^6 = a \cdot a \cdot a \cdot a \cdot a \cdot a)</td>
</tr>
</tbody>
</table>

The next illustration contains several numerical examples of exponential notation.

ILLUSTRATION
The Exponential Notation \(a^n \)

- \(5^4 = 5 \cdot 5 \cdot 5 \cdot 5 = 625 \)
- \(\left(\frac{1}{2}\right)^5 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{32} \)
- \((-3)^3 = (-3)(-3)(-3) = -27 \)
- \(\left(-\frac{1}{3}\right)^4 = \left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right) = \left(\frac{1}{9}\right)\left(\frac{1}{9}\right) = \frac{1}{81} \)

It is important to note that if \(n \) is a positive integer, then an expression such as \(3a^n \) means \(3(a^n), \) not \((3a)^n \). The real number 3 is the coefficient of \(a^n \) in the expression \(3a^n \). Similarly, \(-3a^n \) means \((-3)a^n, \) not \((-3a)^n \).

ILLUSTRATION
The Notation \(ca^n \)

- \(5 \cdot 2^3 = 5 \cdot 8 = 40 \)
- \(-5 \cdot 2^3 = -5 \cdot 8 = -40 \)
- \(-2^4 = -(2^4) = -16 \)
- \(3(-2)^3 = 3(-2)(-2)(-2) = 3(-8) = -24 \)

We next extend the definition of \(a^n \) to nonpositive exponents.

Zero and Negative (Nonpositive) Exponents

<table>
<thead>
<tr>
<th>Definition ((a \neq 0))</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^0 = 1)</td>
<td>(3^0 = 1,) ((-\sqrt{2})^0 = 1)</td>
</tr>
<tr>
<td>(a^{-n} = \frac{1}{a^n})</td>
<td>(5^{-3} = \frac{1}{5^3},) ((-3)^{-5} = \frac{1}{(-3)^5})</td>
</tr>
</tbody>
</table>
If m and n are positive integers, then

$$a^m a^n = a^{m+n}.$$

Since the total number of factors of a on the right is $m + n$, this expression is equal to a^{m+n}; that is,

$$a^m a^n = a^{m+n}.$$

We can extend this formula to $m \leq 0$ or $n \leq 0$ by using the definitions of the zero exponent and negative exponents. This gives us law 1, stated in the next chart.

To prove law 2, we may write, for m and n positive,

$$(a^m)^n = a^{mn}$$

and count the number of times a appears as a factor on the right-hand side. Since $a^n = a \cdot a \cdot a \cdots a$, with a occurring as a factor m times, and since the number of such groups of m factors is n, the total number of factors of a is $m \cdot n$. Thus,

$$(a^m)^n = a^{mn}.$$

The cases $m \leq 0$ and $n \leq 0$ can be proved using the definition of nonpositive exponents. The remaining three laws can be established in similar fashion by counting factors. In laws 4 and 5 we assume that denominators are not 0.

Laws of Exponents for Real Numbers a and b and Integers m and n

<table>
<thead>
<tr>
<th>Law</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $a^m a^n = a^{m+n}$</td>
<td>$2^3 \cdot 2^4 = 2^{3+4} = 2^7 = 128$</td>
</tr>
<tr>
<td>(2) $(a^m)^n = a^{mn}$</td>
<td>$(2^3)^4 = 2^{3\cdot 4} = 2^{12} = 4096$</td>
</tr>
<tr>
<td>(3) $(ab)^n = a^n b^n$</td>
<td>$(20)^3 = (2 \cdot 10)^3 = 2^3 \cdot 10^3 = 8 \cdot 1000 = 8000$</td>
</tr>
<tr>
<td>(4) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$</td>
<td>$\left(\frac{2}{5}\right)^3 = \frac{2^3}{5^3} = \frac{8}{125}$</td>
</tr>
<tr>
<td>(5) (a) $\frac{a^m}{a^n} = a^{m-n}$</td>
<td>$\frac{2^5}{2^3} = 2^{5-3} = 2^2 = 4$</td>
</tr>
<tr>
<td>(b) $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$</td>
<td>$\frac{2^3}{2^5} = \frac{1}{2^{5-3}} = \frac{1}{2^2} = \frac{1}{4}$</td>
</tr>
</tbody>
</table>

We usually use 5(a) if $m > n$ and 5(b) if $m < n$.

We can extend laws of exponents to obtain rules such as $(abc)^n = a^n b^n c^n$ and $a^m a^n a^p = a^{m+n+p}$. Some other examples of the laws of exponents are given in the next illustration.
Laws of Exponents

To simplify an expression involving powers of real numbers means to change it to an expression in which each real number appears only once and all exponents are positive. We shall assume that denominators always represent nonzero real numbers.

EXAMPLE 1 Simplifying expressions containing exponents

Use laws of exponents to simplify each expression:

(a) \((3x^3y^4)(4xy^5)\)
(b) \((2a^2b^3c)^4\)
(c) \(\left(\frac{2r^3}{s}\right)^2\left(\frac{s}{r^3}\right)^3\)
(d) \((u^{-2}v^3)^{-3}\)

SOLUTION

(a) \((3x^3y^4)(4xy^5) = (3)(4)x^3xy^4y^5 = 12x^4y^9\)

(b) \((2a^2b^3c)^4 = 2^4(a^2)^4(b^3)^4c^4 = 16a^8b^{12}c^4\)

(c) \(\left(\frac{2r^3}{s}\right)^2\left(\frac{s}{r^3}\right)^3 = \frac{(2r^3)^2}{s^2}\cdot\frac{s^3}{(r^3)^3} = \frac{2^2(r^3)^2}{s^2}\cdot\frac{s^3}{(r^3)^3} = \frac{4(r^6)}{s^2}\left(\frac{s^3}{r^9}\right) = 4\left(\frac{1}{r^3}\right)s\)

(d) \((u^{-2}v^3)^{-3} = (u^{-2})^{-3}(v^3)^{-3} = u^6v^{-9}\)
The following theorem is useful for problems that involve negative exponents.

\[
\begin{align*}
(1) & \quad \frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m} \\
(2) & \quad \left(\frac{a}{b} \right)^{-n} = \left(\frac{b}{a} \right)^n
\end{align*}
\]

PROOFS Using properties of negative exponents and quotients, we obtain

\[
(1) \quad \frac{a^{-m}}{b^{-n}} = \frac{1}{a^m} \cdot \frac{1}{b^n} = \frac{1}{a^m} \cdot \frac{b^n}{1} = \frac{b^n}{a^m}
\]

\[
(2) \quad \left(\frac{a}{b} \right)^{-n} = \frac{a^{-n}}{b^{-n}} = \frac{b^n}{a^m} = \left(\frac{b}{a} \right)^n
\]

EXAMPLE 2 Simplifying expressions containing negative exponents

Simplify:

(a) \[\frac{8x^3y^{-5}}{4x^{-1}y^2} \]

(b) \[\left(\frac{u^2}{2v} \right)^{-3} \]

SOLUTION We apply the theorem on negative exponents and the laws of exponents.

(a) \[\frac{8x^3y^{-5}}{4x^{-1}y^2} = \frac{8x^3}{4y^2} \cdot \frac{y^{-5}}{x^{-1}} \]

\[= \frac{8x^3}{4y^2} \cdot \frac{x^1}{y^5} \]

\[= \frac{2x^4}{y^3} \]

\[\text{theorem on negative exponents (1)} \]

\[\text{law 1 of exponents} \]

(b) \[\left(\frac{u^2}{2v} \right)^{-3} = \left(\frac{2v}{u^2} \right)^3 \]

\[= \frac{2^3v^3}{(u^2)^3} \]

\[= \frac{8v^3}{u^6} \]

\[\text{laws 4 and 3 of exponents} \]

\[\text{law 2 of exponents} \]

We next define the **principal nth root** \(\sqrt[n]{a} \) of a real number \(a \).
Complex numbers, discussed in Section 2.4, are needed to define if and whenever \(n \) is an even positive integer, because for all real numbers \(b \), whenever \(n \) is even.

If \(n = 2 \), we write \(\sqrt{a} \) instead of \(\sqrt[n]{a} \) and call \(\sqrt{a} \) the principal square root of \(a \) or, simply, the square root of \(a \). The number \(\sqrt{a} \) is the (principal) cube root of \(a \).

<table>
<thead>
<tr>
<th>Illustration</th>
<th>The Principal (n)th Root (\sqrt[n]{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{16} = 4), since (4^2 = 16).</td>
<td></td>
</tr>
<tr>
<td>(\sqrt[3]{2} = \frac{1}{2}), since (\left(\frac{1}{2}\right)^3 = \frac{1}{8}).</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{-8} = -2), since ((-2)^3 = -8).</td>
<td></td>
</tr>
<tr>
<td>(\sqrt[5]{-16}) is not a real number.</td>
<td></td>
</tr>
</tbody>
</table>

Note that \(\sqrt{16} \neq \pm 4 \), since, by definition, roots of positive real numbers are positive. The symbol \(\pm \) is read “plus or minus.”

To complete our terminology, the expression \(\sqrt[n]{a} \) is a radical, the number \(a \) is the radicand, and \(n \) is the index of the radical. The symbol \(\sqrt{\cdot} \) is called a radical sign.

If \(\sqrt{a} = b \), then \(b^2 = a \); that is, \((\sqrt{a})^2 = a \). If \(\sqrt{a} = b \), then \(b^3 = a \), or \((\sqrt[3]{a})^3 = a \). Generalizing this pattern gives us property 1 in the next chart.

Properties of \(\sqrt[n]{a} \) (\(n \) is a positive integer)

<table>
<thead>
<tr>
<th>Property</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ((\sqrt[n]{a})^n = a) if (\sqrt[n]{a}) is a real number</td>
<td>((\sqrt{5})^2 = 5), ((\sqrt[3]{-8})^3 = -8)</td>
</tr>
<tr>
<td>(2) (\sqrt[n]{a^2} = a) if (a \geq 0)</td>
<td>(\sqrt{5}^2 = 5), (\sqrt[3]{2}^3 = 2)</td>
</tr>
<tr>
<td>(3) (\sqrt[n]{a^2} = a) if (a < 0) and (n) is odd</td>
<td>(\sqrt{(-2)^3} = -2), (\sqrt[3]{(-2)^3} = -2)</td>
</tr>
<tr>
<td>(4) (\sqrt[n]{a^2} =</td>
<td>a</td>
</tr>
</tbody>
</table>

If \(a \geq 0 \), then property 4 reduces to property 2. We also see from property 4 that

\[
\sqrt{x^2} = |x|
\]

for every real number \(x \). In particular, if \(x \geq 0 \), then \(\sqrt{x^2} = x \); however, if \(x < 0 \), then \(\sqrt{x^2} = -x \), which is positive.
The three laws listed in the next chart are true for positive integers \(m \) and \(n \), provided the indicated roots exist—that is, provided the roots are real numbers.

Laws of Radicals

<table>
<thead>
<tr>
<th>Law</th>
<th>Illustrations</th>
</tr>
</thead>
</table>
| (1) \(\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \) | \(\sqrt[3]{50} = \sqrt[3]{25 \cdot 2} = \sqrt[3]{25} \cdot \sqrt[3]{2} = 5 \sqrt[3]{2} \)
\(\sqrt[3]{-108} = \sqrt[3]{(-27)(4)} = \sqrt[3]{-27} \cdot \sqrt[3]{4} = -3 \sqrt[3]{4} \) |
| (2) \(\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \) | \(\sqrt[5]{\frac{5}{8}} = \frac{\sqrt[5]{5}}{\sqrt[5]{8}} = \frac{\sqrt[5]{5}}{2} \) |
| (3) \(\sqrt[n]{\sqrt[n]{a}} = \sqrt[n]{a} \) | \(\sqrt[3]{\sqrt[4]{64}} = \sqrt[12]{64} = \sqrt[4]{2} = 2 \) |

The radicands in laws 1 and 2 involve products and quotients. Care must be taken if sums or differences occur in the radicand. The following chart contains two particular warnings concerning commonly made mistakes.

Warning!

<table>
<thead>
<tr>
<th>If (a \neq 0) and (b \neq 0)</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\sqrt{a^2 + b^2} \neq a + b)</td>
<td>(\sqrt{3^2 + 4^2} = \sqrt{25} = 5 \neq 3 + 4 = 7)</td>
</tr>
<tr>
<td>(2) (\sqrt{a+b} \neq \sqrt{a} + \sqrt{b})</td>
<td>(\sqrt{4 + 9} = \sqrt{13} \neq \sqrt{4} + \sqrt{9} = 5)</td>
</tr>
</tbody>
</table>

If \(c \) is a real number and \(c^n \) occurs as a factor in a radical of index \(n \), then we can remove \(c \) from the radicand if the sign of \(c \) is taken into account. For example, if \(c > 0 \) or if \(c < 0 \) and \(n \) is odd, then

\[
\sqrt[n]{c^2d} = \sqrt[n]{c^n} \sqrt[n]{d} = c \sqrt[n]{d},
\]

provided \(\sqrt[n]{d} \) exists. If \(c < 0 \) and \(n \) is even, then

\[
\sqrt[n]{c^2d} = \sqrt[n]{c^n} \sqrt[n]{d} = |c| \sqrt[n]{d},
\]

provided \(\sqrt[n]{d} \) exists.

Illustration: Removing \(n \)th Powers from \(\sqrt[n]{\cdot} \)

- \(\sqrt[3]{x^3} = \sqrt[3]{x^3 \cdot x^2} = \sqrt[3]{x^3} \sqrt[3]{x^2} = x \sqrt[3]{x^2} \)
- \(\sqrt[3]{x^3} = \sqrt[3]{x^3 \cdot x} = \sqrt[3]{(x^3)^3} \sqrt[3]{x} = x^2 \sqrt[3]{x} \)
- \(\sqrt{x^2y} = \sqrt{x^2} \sqrt{y} = |x| \sqrt{y} \)
- \(\sqrt{x^2} = \sqrt{(x^3)^2} = |x^3| \)
- \(\sqrt{x^2y^3} = \sqrt{x^2 \cdot x^2y^3} = \sqrt{x^2} \sqrt{x^2y^3} = |x| \sqrt{x^2y^3} \)

Note: To avoid considering absolute values, in examples and exercises involving radicals in this chapter, we shall assume that all letters—\(a, b, c, d, x, y \).
and so on—that appear in radicands represent positive real numbers, unless otherwise specified.

As shown in the preceding illustration and in the following examples, if the index of a radical is \(n \), then we rearrange the radicand, isolating a factor of the form \(p^n \), where \(p \) may consist of several letters. We then remove \(\sqrt[n]{p^n} = p \) from the radical, as previously indicated. Thus, in Example 3(b) the index of the radical is 3 and we rearrange the radicand into cubes, obtaining a factor \(p^3 \), with \(p = 2xyz \). In part (c) the index of the radical is 2 and we rearrange the radicand into squares, obtaining a factor \(p^2 \), with \(p = 3ab \).

To simplify a radical means to remove factors from the radical until no factor in the radicand has an exponent greater than or equal to the index of the radical and the index is as low as possible.

Example 3 Removing factors from radicals

Simplify each radical (all letters denote positive real numbers):

(a) \(\sqrt[3]{320} \)

(b) \(\sqrt[3]{16x^3y^6z^4} \)

(c) \(\sqrt[3]{3a^3b^3} \sqrt[6]{6a^7b} \)

Solution

(a) \(\sqrt[3]{320} = \sqrt[3]{64 \cdot 5} \) factor out the largest cube in 320

\[= \sqrt[3]{4^3 \cdot 5} \] law 1 of radicals

\[= 4\sqrt[3]{5} \] property 2 of \(\sqrt{} \)

(b) \(\sqrt[3]{16x^3y^6z^4} = \sqrt[3]{(2^3x^3y^6z^4)(2y^2z)} \) rearrange radicand into cubes

\[= \sqrt[3]{(2xy^2z)^3(2y^2z)} \] laws 2 and 3 of exponents

\[= \sqrt[3]{(2xy^2z)^3} \sqrt[3]{2y^2z} \] law 1 of radicals

\[= 2xy^2z \sqrt[3]{2y^2z} \] property 2 of \(\sqrt{} \)

(c) \(\sqrt[3]{3a^3b^3} \sqrt[6]{6a^7b} = \sqrt[3]{3a^3b^3} \cdot 2 \cdot 3a^b \) law 1 of radicals

\[= \sqrt[3]{(3a^3b^3)^2(2a)} \] rearrange radicand into squares

\[= \sqrt[3]{(3a^3b^3)^2} \sqrt[6]{2a} \] laws 2 and 3 of exponents

\[= \sqrt[3]{(3a^3b^3)^2} \sqrt[6]{2a} \] law 1 of radicals

\[= 3a^b \sqrt[3]{2a} \] property 2 of \(\sqrt{} \)

If the denominator of a quotient contains a factor of the form \(\sqrt[n]{a^k} \), with \(k < n \) and \(a > 0 \), then multiplying the numerator and denominator by \(\sqrt[n]{a^{n-k}} \) will eliminate the radical from the denominator, since

\[\sqrt[n]{a^k} \sqrt[n]{a^{n-k}} = \sqrt[n]{a^{k+n-k}} = \sqrt[n]{a^n} = a. \]

This process is called **rationalizing a denominator**. Some special cases are listed in the following chart.
Rationalizing Denominators of Quotients \((a > 0)\)

<table>
<thead>
<tr>
<th>Factor in denominator</th>
<th>Multiply numerator and denominator by</th>
<th>Resulting factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{a})</td>
<td>(\sqrt{a})</td>
<td>(\sqrt{a} \cdot \sqrt{a} = \sqrt{a^2} = a)</td>
</tr>
<tr>
<td>(\sqrt[n]{a})</td>
<td>(\sqrt[n]{a^n})</td>
<td>(\sqrt[n]{a} \cdot \sqrt[n]{a^n} = \sqrt[n]{a^n} = a)</td>
</tr>
<tr>
<td>(\sqrt[n]{a^2})</td>
<td>(\sqrt[n]{a^2})</td>
<td>(\sqrt[n]{a^n} \cdot \sqrt[n]{a^2} = \sqrt[n]{a^2} = a)</td>
</tr>
</tbody>
</table>

The next example illustrates this technique.

Example 4 Rationalizing denominators

Rationalize each denominator:

(a) \(\frac{1}{\sqrt{5}}\)
(b) \(\frac{1}{\sqrt{x}}\)
(c) \(\sqrt{\frac{2}{3}}\)
(d) \(\frac{x}{y^2}\)

Solution

(a) \(\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5}\)

(b) \(\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} \cdot \frac{\sqrt{x^2}}{\sqrt{x^2}} = \frac{\sqrt{x^2}}{x}\)

(c) \(\sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{2} \cdot \sqrt{3}}{3} = \sqrt{6} \cdot \frac{3}{3} = \sqrt{6}\)

(d) \(\frac{x}{y^2} = \frac{\sqrt{x}}{\sqrt{y^2}} = \frac{\sqrt{x}}{\sqrt{y^2}} \cdot \frac{\sqrt{y^2}}{\sqrt{y^2}} = \frac{\sqrt{x} \cdot \sqrt{y^2}}{y} = \frac{\sqrt{xy^2}}{y}\)

If we use a calculator to find decimal approximations of radicals, there is no advantage in rationalizing denominators, such as \(1/\sqrt{5} = \sqrt{5}/5\) or \(\sqrt{2/3} = \sqrt{6}/3\), as we did in Example 4(a) and (c). However, for algebraic simplifications, changing expressions to such forms is sometimes desirable. Similarly, in advanced mathematics courses such as calculus, changing \(1/\sqrt{x}\) to \(\sqrt{x^2}/x\), as in Example 4(b), could make a problem more complicated. In such courses it is simpler to work with the expression \(1/\sqrt{x}\) than with its rationalized form.

We next use radicals to define **rational exponents**.

<table>
<thead>
<tr>
<th>Definition of Rational Exponents</th>
<th>Let (m/n) be a rational number, where (n) is a positive integer greater than 1. If (a) is a real number such that (\sqrt[n]{a}) exists, then</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (a^{\frac{1}{n}} = \sqrt[n]{a})</td>
<td></td>
</tr>
<tr>
<td>(2) (a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m})</td>
<td></td>
</tr>
<tr>
<td>(3) (a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (a^m)^{\frac{1}{n}})</td>
<td></td>
</tr>
</tbody>
</table>
When evaluating $a^{\frac{m}{n}}$ in (2), we usually use $\sqrt[n]{a^m}$; that is, we take the nth root of a first and then raise that result to the mth power, as shown in the following illustration.

ILLUSTRATION The Exponential Notation $a^{\frac{m}{n}}$

- $x^{\frac{1}{3}} = \sqrt[3]{x}$
- $x^{\frac{3}{5}} = \left(\sqrt[5]{x} \right)^3 = \sqrt[5]{x^3}$
- $125^{\frac{2}{3}} = \left(\sqrt[3]{125} \right)^2 = \left(\sqrt[3]{5^3} \right)^2 = 5^2 = 25$
- $\left(\frac{32}{243} \right)^{\frac{3}{5}} = \left(\sqrt[5]{ \frac{32}{243} } \right)^3 = \left(\sqrt[5]{ \left(\frac{2}{3} \right)^5 } \right)^3 = \left(\frac{2}{3} \right)^3 = \frac{8}{27}$

The laws of exponents are true for rational exponents and also for irrational exponents, such as $3^{\sqrt{2}}$ or 5^π, considered in Chapter 5.

To simplify an expression involving rational powers of letters that represent real numbers, we change it to an expression in which each letter appears only once and all exponents are positive. As we did with radicals, we shall assume that all letters represent positive real numbers unless otherwise specified.

Example 5 Simplifying rational powers

Simplify:

(a) $(-27)^{\frac{2}{3}}(4)^{-\frac{5}{2}}$ (b) $(r^2s^6)^{\frac{1}{3}}$ (c) $\left(\frac{2x^{\frac{2}{3}}}{y^{\frac{1}{2}}} \right)^2 \left(\frac{3x^{-\frac{5}{6}}}{y^{\frac{1}{3}}} \right)$

Solution

(a) $(-27)^{\frac{2}{3}}(4)^{-\frac{5}{2}} = \left(\sqrt[3]{-27} \right)^2 \left(\sqrt{4} \right)^{-5}$

definition of rational exponents

$= (-3)^2 (2)^{-5}$

take roots

$= \frac{9}{32}$

definition of negative exponents

(b) $(r^2s^6)^{\frac{1}{3}} = (r^2)^{\frac{1}{3}}(s^6)^{\frac{1}{3}}$

law 3 of exponents

$= r^{\frac{2}{3}}s^2$

law 2 of exponents

(c) $\left(\frac{2x^{\frac{2}{3}}}{y^{\frac{1}{2}}} \right)^2 \left(\frac{3x^{-\frac{5}{6}}}{y^{\frac{1}{3}}} \right) = \left(\frac{4x^{\frac{4}{3}}}{y} \right) \left(\frac{3x^{-\frac{5}{6}}}{y^{\frac{1}{3}}} \right)$

laws of exponents

$= \left(\frac{4 \cdot 3}{y^{1+(1/3)}} \right) x^{\frac{4}{3} - \frac{5}{6}}$

law 1 of exponents

$= \frac{12x^{\frac{8}{6} - \frac{5}{6}}}{y^{\frac{4}{3}}}$

common denominator

$= \frac{12x^{\frac{1}{2}}}{y^{\frac{4}{3}}}$

simplify

Rational exponents are useful for problems involving radicals that do not have the same index, as illustrated in the next example.
EXAMPLE 6 Combining radicals

Change to an expression containing one radical of the form $\sqrt[n]{a^m}$:

(a) $\sqrt[n]{a} \sqrt[n]{a}$ (b) $\frac{\sqrt[n]{a}}{\sqrt[n]{a^2}}$

Solution Introducing rational exponents, we obtain

(a) $\sqrt[n]{a} \sqrt[n]{a} = a^{1/n}a^{1/2} = a^{(1/2) + (1/2)} = a^{5/6} = \sqrt[6]{a^5}$

(b) $\frac{\sqrt[n]{a}}{\sqrt[n]{a^2}} = a^{1/n} a^{(1/2) - (2/3)} = a^{-5/12} = \frac{1}{a^{5/12}} = \frac{1}{\sqrt[12]{a^5}}$

In Exercises 1.2, whenever an index of a radical is even (or a rational exponent m/n with n even is employed), assume that the letters that appear in the radicand denote positive real numbers unless otherwise specified.

1.2 Exercises

Exer. 1–10: Express the number in the form a/b, where a and b are integers.

1. $(-\frac{2}{3})^4$
2. $(-3)^3$
3. 2^{-3}
4. $2^0 + 0^2$
5. $-2^4 + 3^{-1}$
6. $(\frac{3}{2})^4 - 2^{-4}$
7. $16^{-3/4}$
8. $9^{5/2}$
9. $(-0.008)^{2/3}$
10. $(0.008)^{-2/3}$

Exer. 11–46: Simplify.

11. $(\frac{1}{2}x^3)(16x^5)$
12. $(-3x^3)(4x^4)$
13. $(2x^3)(3x^2)$
14. $\frac{4x^3}{(3x^2)}$
15. $(\frac{1}{2}a^3)(-3a^2)(4a^7)$
16. $(-4b^3)(\frac{1}{6}b^3)(-9b^4)$
17. $(6x^3)^2$
18. $(3y^2)(2y^2)^2$
19. $(3a^3v^3)(4a^4v^{-5})$
20. $(x^3y^2)(-2x^2)(x^3y^{-2})$
21. $(8x^4y^{-3})(\frac{1}{2}x^{-5}y^2)$
22. $\left(\frac{4a^2b}{a^3b^2}\right)$ $\left(\frac{5a^2b}{2b^3}\right)$
23. $(\frac{1}{2}x^4y^{-1})^{-2}$
24. $(-2xy^2)^3\left(\frac{x^3}{8y^3}\right)$
25. $(3y^3)^4(4y^2)^{-3}$
26. $(-3a^2b^{-2})^3$
27. $(-2r^5s^{-3})^{-2}$
28. $(2x^2y^{-5})(6x^{-3}y)(\frac{1}{2}x^{-1}y^3)$
29. $(5x^2y^{-3})(4x^{-5}y^4)$
30. $(-2r^5s^2)(3r^{-1}s^2)^2$
31. $\frac{3x^2y^2}{x^0y^{-3}}$
32. $(4a^2b^3)^2\left(-\frac{a^2}{2b}\right)$
33. $(4a^{3/2})(2a^{1/2})$
34. $(-6x^{1/5})(2x^{8/5})$
35. $(3x^{-5/8})(8x^{2/3})$
36. $(8r)^{1/5}(2r^{1/2})$
37. $(27a^3)^{-2/3}$
38. $(8x^{-2/3})x^{16}$
39. $(8x^{-2/3})x^{16}$
40. $(3x^{1/2})(-2x^{5/2})$
41. $\left(-\frac{8x^3}{y^{-6}}\right)^{2/3}$
42. $\left(-\frac{y^{3/2}}{x^{1/3}}\right)^3$
43. $\left(\frac{a^6}{9y^{-2}}\right)^{-1/2}$
44. $\left(-\frac{e^{-4}}{16d^3}\right)^{3/4}$
45. $\left(\frac{x^3y^3}{x^{1/2}y^{-2}}\right)^{-1/2}$
46. $a^{x/2}a^{-3/2}a^{1/6}$

Exer. 47–52: Rewrite the expression using rational exponents.

47. $\sqrt[n]{x^2}$
48. $\sqrt[n]{x^3}$
49. $\sqrt[n]{(a + b)^2}$
50. $\sqrt[n]{a + \sqrt[n]{b}}$
51. $\sqrt[n]{x^2 + y^2}$
52. $\sqrt[n]{r^4 - 4}$
Exer. 53–56: Rewrite the expression using a radical.
53 (a) \(4x^{3/2}\) (b) \((4x)^{3/2}\)
54 (a) \(4 + x^{3/2}\) (b) \((4 + x)^{3/2}\)
55 (a) \(8 - y^{1/3}\) (b) \((8 - y)^{1/3}\)
56 (a) \(8y^{1/3}\) (b) \((8y)^{1/3}\)

Exer. 57–80: Simplify the expression, and rationalize the denominator when appropriate.
57 \(\sqrt{81}\) 58 \(\sqrt{-125}\)
59 \(-\sqrt{64}\) 60 \(\sqrt{256}\)
61 \(\frac{1}{\sqrt{2}}\) 62 \(\frac{1}{\sqrt{7}}\)
63 \(\sqrt{9x^{-5}y}\) 64 \(\sqrt{16a^2b^{-7}}\)
65 \(\sqrt{8a^3b^{-5}}\) 66 \(\sqrt{81r^7s^9}\)
67 \(\sqrt{\frac{3x^3}{2y^2}}\) 68 \(\sqrt{\frac{1}{3x^2y}}\)
69 \(\sqrt{\frac{2x^3y^4}{9x}}\) 70 \(\sqrt{\frac{3x^3y^3}{4x}}\)
71 \(\sqrt{\frac{5x^3y^3}{27x^2}}\) 72 \(\sqrt{\frac{x^3y^{12}}{125x}}\)
73 \(\sqrt{\frac{5x^3y^2}{8x^3}}\) 74 \(\sqrt{\frac{3x^{11}y^3}{9x^2}}\)
75 \(\sqrt{(3x^3y^{-3})^5}\) 76 \(\sqrt{(2u^{-5}v)^{-6}}\)
77 \(\sqrt{\frac{8x^3}{y^2} \cdot \sqrt{\frac{4x^2}{y^2}}}\) 78 \(\sqrt{5xy^7} \cdot \sqrt{10x^{-1}y^3}\)
79 \(\sqrt{3r^2v^3} \cdot \sqrt{-9r^{-1}v^4}\) 80 \(\sqrt{(2r - s)^3}\)

Exer. 81–84: Simplify the expression, assuming \(x\) and \(y\) may be negative.
81 \(\sqrt{x^3y^{-2}}\) 82 \(\sqrt{x^{-3}y^{15}}\)
83 \(\sqrt{x^3(y - 1)^{12}}\) 84 \(\sqrt{(x + 2)^{13}y^4}\)

Exer. 85–90: Replace the symbol \(\Box\) with either \(=\) or \(\neq\) to make the resulting statement true, whenever the expression has meaning. Give a reason for your answer.
85 \((a^3)^2 \Box a^{(cr)}\) 86 \((a^2 + 1)^{1/2} \Box a + 1\)
87 \(a^b \Box (ab)^y\) 88 \(\sqrt{a} \Box \left(\sqrt{a}\right)^y\)
89 \(\sqrt[3]{\frac{1}{c}} \Box \frac{1}{\sqrt[3]{c}}\) 90 \(a^{1/2} \Box \frac{1}{a^{1/2}}\)

Exer. 91–92: In evaluating negative numbers raised to fractional powers, it may be necessary to evaluate the root and integer power separately. For example, \((-3)^{2/5}\) can be evaluated successfully as \([(-3)^{1/5}]^2\) or \([(-3)^{1/2}]^{1/5}\), whereas an error message might otherwise appear. Approximate the real-number expression to four decimal places.
91 (a) \((-3)^{2/5}\) (b) \((-5)^{4/3}\)
92 (a) \((-1.2)^{3/7}\) (b) \((-5.08)^{3/7}\)

Exer. 93–94: Approximate the real-number expression to four decimal places.
93 (a) \(\sqrt{\pi + 1}\) (b) \(\sqrt{15.1} + 5^{1/4}\)
94 (a) \((2.6 - 1.9)^{-2}\) (b) \(5^{1/7}\)

Savings account One of the oldest banks in the United States is the Bank of America, founded in 1812. If $200 had been deposited at that time into an account that paid 4% annual interest, then 180 years later the amount would have grown to \(200(1.04)^{180}\) dollars. Approximate this amount to the nearest cent.

Viewing distance On a clear day, the distance \(d\) (in miles) that can be seen from the top of a tall building of height \(h\) (in feet) can be approximated by \(d = 1.2\sqrt{h}\). Approximate the distance that can be seen from the top of the Chicago Sears Tower, which is 1454 feet tall.

Length of a halibut The length-weight relationship for a halibut can be approximated by the formula \(L = 0.46\sqrt{W}\), where \(W\) is in kilograms and \(L\) is in meters. The largest documented halibut weighed 230 kilograms. Estimate its length.

Weight of a whale The length-weight relationship for the sei whale can be approximated by \(W = 0.0016L^{2.43}\), where \(W\) is in tons and \(L\) is in feet. Estimate the weight of a whale that is 25 feet long.

Weight lifters’ handicaps O’Carroll’s formula is used to handicap weight lifters. If a lifter who weighs \(b\) kilograms lifts \(w\) kilograms of weight, then the handicapped weight \(W\) is given by
\[
W = \frac{w}{\sqrt{b - 35}}.
\]
Suppose two lifters weighing 75 kilograms and 120 kilograms lift weights of 180 kilograms and 250 kilograms, respectively. Use O’Carroll’s formula to determine the superior weight lifter.

Body surface area A person’s body surface area \(S\) (in square feet) can be approximated by
\[
S = (0.1091)h^{0.425}w^{0.725},
\]
where height \(h\) is in inches and weight \(w\) is in pounds.
Estimate S for a person 6 feet tall weighing 175 pounds.

If a person is 5 feet 6 inches tall, what effect does a 10% increase in weight have on S?

101 Men’s weight The average weight W (in pounds) for men with height h between 64 and 79 inches can be approximated using the formula $W = 0.1166h^{1.7}$. Construct a table for W by letting $h = 64, 65, \ldots, 79$. Round all weights to the nearest pound.

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>67</td>
<td>75</td>
</tr>
<tr>
<td>68</td>
<td>76</td>
</tr>
<tr>
<td>69</td>
<td>77</td>
</tr>
<tr>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
</tr>
</tbody>
</table>

102 Women’s weight The average weight W (in pounds) for women with height h between 60 and 75 inches can be approximated using the formula $W = 0.1049h^{1.3}$. Construct a table for W by letting $h = 60, 61, \ldots, 75$. Round all weights to the nearest pound.

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>61</td>
<td>69</td>
</tr>
<tr>
<td>62</td>
<td>70</td>
</tr>
<tr>
<td>63</td>
<td>71</td>
</tr>
<tr>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>67</td>
<td>75</td>
</tr>
</tbody>
</table>

1.3 Algebraic Expressions

We sometimes use the notation and terminology of sets to describe mathematical relationships. A set is a collection of objects of some type, and the objects are called elements of the set. Capital letters R, S, T, \ldots are often used to denote sets, and lowercase letters a, b, x, y, \ldots usually represent elements of sets. Throughout this book, \mathbb{R} denotes the set of real numbers and \mathbb{Z} denotes the set of integers.

Two sets S and T are equal, denoted by $S = T$, if S and T contain exactly the same elements. We write $S \neq T$ if S and T are not equal. Additional notation and terminology are listed in the following chart.

<table>
<thead>
<tr>
<th>Notation or terminology</th>
<th>Meaning</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \in S$</td>
<td>a is an element of S</td>
<td>$3 \in \mathbb{Z}$</td>
</tr>
<tr>
<td>$a \notin S$</td>
<td>a is not an element of S</td>
<td>$\frac{3}{5} \notin \mathbb{Z}$</td>
</tr>
<tr>
<td>S is a subset of T</td>
<td>Every element of S is an element of T</td>
<td>\mathbb{Z} is a subset of \mathbb{R}</td>
</tr>
<tr>
<td>Constant</td>
<td>A letter or symbol that represents a specific element of a set</td>
<td>$5, -\sqrt{2}, \pi$</td>
</tr>
<tr>
<td>Variable</td>
<td>A letter or symbol that represents any element of a set</td>
<td>Let x denote any real number</td>
</tr>
</tbody>
</table>
We usually use letters near the end of the alphabet, such as \(x, y, \) and \(z \), for variables and letters near the beginning of the alphabet, such as \(a, b, \) and \(c \), for constants. Throughout this text, unless otherwise specified, variables represent real numbers.

If the elements of a set \(S \) have a certain property, we sometimes write \(S = \{x: \text{property} \} \) and state the property describing the variable \(x \) in the space after the colon. The expression involving the braces and colon is read “the set of all \(x \) such that . . .,” where we complete the phrase by stating the desired property. For example, \(\{x: x > 3\} \) is read “the set of all \(x \) such that \(x \) is greater than 3.”

For finite sets, we sometimes list all the elements of the set within braces. Thus, if the set \(T \) consists of the first five positive integers, we may write \(T = \{1, 2, 3, 4, 5\} \). When we describe sets in this way, the order used in listing the elements is irrelevant, so we could also write \(T = \{1, 3, 2, 4, 5\} \), \(T = \{4, 3, 2, 5, 1\} \), and so on.

If we begin with any collection of variables and real numbers, then an algebraic expression is the result obtained by applying additions, subtractions, multiplications, divisions, powers, or the taking of roots to this collection. If specific numbers are substituted for the variables in an algebraic expression, the resulting number is called the value of the expression for these numbers. The domain of an algebraic expression consists of all real numbers that may represent the variables. Thus, unless otherwise specified, we assume that the domain consists of the real numbers that, when substituted for the variables, do not make the expression meaningless, in the sense that denominators cannot equal zero and roots always exist. Two illustrations are given in the following chart.

Algebraic Expressions

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Domain</th>
<th>Typical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3 - 5x + \frac{6}{\sqrt{x}})</td>
<td>all (x > 0)</td>
<td>At (x = 4):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4^3 - 5(4) + \frac{6}{\sqrt{4}} = 64 - 20 + 3 = 47)</td>
</tr>
<tr>
<td>(\frac{2xy + (3/x^2)}{\sqrt{y - 1}})</td>
<td>all (x \neq 0) and all (y \neq 1)</td>
<td>At (x = 1) and (y = 9):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{2(1)(9) + (3/1^2)}{\sqrt{9 - 1}} = \frac{21}{\sqrt{8}} = \frac{21}{2})</td>
</tr>
</tbody>
</table>

If \(x \) is a variable, then a **monomial** in \(x \) is an expression of the form \(ax^n \), where \(a \) is a real number and \(n \) is a nonnegative integer. A **binomial** is a sum of two monomials, and a **trinomial** is a sum of three monomials. A **polynomial in \(x \)** is a sum of any number of monomials in \(x \). Another way of stating this is as follows.
A polynomial in \(x \) is a sum of the form
\[
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,
\]
where \(n \) is a nonnegative integer and each coefficient \(a_k \) is a real number. If \(a_n \neq 0 \), then the polynomial is said to have degree \(n \).

Each expression \(a_k x^k \) in the sum is a term of the polynomial. If a coefficient \(a_k \) is zero, we usually delete the term \(a_k x^k \). The coefficient \(a_k \) of the highest power of \(x \) is called the leading coefficient of the polynomial.

The following chart contains specific illustrations of polynomials.

<table>
<thead>
<tr>
<th>Example</th>
<th>Leading coefficient</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x^4 + 5x^3 + (-7)x + 4)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(x^8 + 9x^2 + (-2)x)</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>(-5x^2 + 1)</td>
<td>-5</td>
<td>2</td>
</tr>
<tr>
<td>(7x + 2)</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>(8)</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

By definition, two polynomials are equal if and only if they have the same degree and the coefficients of like powers of \(x \) are equal. If all the coefficients of a polynomial are zero, it is called the zero polynomial and is denoted by 0. However, by convention, the degree of the zero polynomial is not zero but, instead, is undefined. If \(c \) is a nonzero real number, then \(c \) is a polynomial of degree 0. Such polynomials (together with the zero polynomial) are constant polynomials.

If a coefficient of a polynomial is negative, we usually use a minus sign between appropriate terms. To illustrate,
\[
3x^2 + (-5)x + (-7) = 3x^2 - 5x - 7.
\]

We may also consider polynomials in variables other than \(x \). For example, \(\frac{2}{5}z^2 - 3z^7 + 8 - \sqrt{5}z^4 \) is a polynomial in \(z \) of degree 7. We often arrange the terms of a polynomial in order of decreasing powers of the variable; thus, we write
\[
\frac{2}{5}z^2 - 3z^7 + 8 - \sqrt{5}z^4 = -3z^7 - \sqrt{5}z^4 + \frac{2}{5}z^2 + 8.
\]

We may regard a polynomial in \(x \) as an algebraic expression obtained by employing a finite number of additions, subtractions, and multiplications involving \(x \). If an algebraic expression contains divisions or roots involving a variable \(x \), then it is not a polynomial in \(x \).
CHAPTER 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

ILLUSTRATION

Nonpolynomials

- \(\frac{1}{x} + 3x \)
- \(\frac{x - 5}{x^2 + 2} \)
- \(3x^2 + \sqrt{x} - 2 \)

Since polynomials represent real numbers, we may use the properties described in Section 1.1. In particular, if additions, subtractions, and multiplications are carried out with polynomials, we may simplify the results by using properties of real numbers, as demonstrated in the following examples.

EXAMPLE 1 Adding and subtracting polynomials

(a) Find the sum: \((x^3 + 2x^2 - 5x + 7) + (4x^3 - 5x^2 + 3)\)

(b) Find the difference: \((x^3 + 2x^2 - 5x + 7) - (4x^3 - 5x^2 + 3)\)

SOLUTION

(a) To obtain the sum of any two polynomials in \(x\), we may add coefficients of like powers of \(x\).

\[
(x^3 + 2x^2 - 5x + 7) + (4x^3 - 5x^2 + 3) \\
= x^3 + 2x^2 - 5x + 7 + 4x^3 - 5x^2 + 3 \quad \text{remove parentheses} \\
= (1 + 4)x^3 + (2 - 5)x^2 - 5x + (7 + 3) \quad \text{add coefficients of like powers of } x \\
= 5x^3 - 3x^2 - 5x + 10 \quad \text{simplify}
\]

The grouping in the first step was shown for completeness. You may omit this step after you become proficient with such manipulations.

(b) When subtracting polynomials, we first remove parentheses, noting that the minus sign preceding the second pair of parentheses changes the sign of each term of that polynomial.

\[
(x^3 + 2x^2 - 5x + 7) - (4x^3 - 5x^2 + 3) \\
= x^3 + 2x^2 - 5x + 7 - 4x^3 + 5x^2 - 3 \quad \text{remove parentheses} \\
= (1 - 4)x^3 + (2 + 5)x^2 - 5x + (7 - 3) \quad \text{add coefficients of like powers of } x \\
= -3x^3 + 7x^2 - 5x + 4 \quad \text{simplify}
\]

EXAMPLE 2 Multiplying binomials

Find the product: \((4x + 5)(3x - 2)\)

SOLUTION Since \(3x - 2 = 3x + (-2)\), we may proceed as in Example 1 of Section 1.1:

\[
(4x + 5)(3x - 2) \\
= (4x)(3x) + (4x)(-2) + (5)(3x) + (5)(-2) \quad \text{distributive properties} \\
= 12x^2 - 8x + 15x - 10 \quad \text{multiply} \\
= 12x^2 + 7x - 10 \quad \text{simplify}
\]

Calculator check for Example 2: Store 17 in a memory location and show that the original expression and the final expression both equal 3577.
After becoming proficient working problems of the type in Example 2, you may wish to perform the first two steps mentally and proceed directly to the final form.

In the next example we illustrate different methods for finding the product of two polynomials.

Example 3 Multiplying polynomials

Find the product: \((x^2 + 5x - 4)(2x^3 + 3x - 1)\)

Solution

Method 1 We begin by using a distributive property, treating the polynomial \(2x^3 + 3x - 1\) as a single real number:

\[
(x^2 + 5x - 4)(2x^3 + 3x - 1) = x^2(2x^3 + 3x - 1) + 5x(2x^3 + 3x - 1) - 4(2x^3 + 3x - 1)
\]

We next use another distributive property three times and simplify the result, obtaining

\[
(x^2 + 5x - 4)(2x^3 + 3x - 1) = 2x^5 + 3x^3 - x^2 + 10x^4 + 15x^2 - 5x - 8x^3 - 12x + 4 = 2x^5 + 10x^4 - 5x^3 + 14x^2 - 17x + 4.
\]

Note that the three monomials in the first polynomial were multiplied by each of the three monomials in the second polynomial, giving us a total of nine terms.

Method 2 We list the polynomials vertically and multiply, leaving spaces for powers of \(x\) that have zero coefficients, as follows:

\[
\begin{array}{c@{+}c@{-}c@{-}c@{-}c@{-}c}
2x^3 & + & 3x & - & 1 \\
2x^5 & + & 3x^3 & - & x^2 & = & x^2(2x^3 + 3x - 1) \\
10x^4 & + & 15x^2 & - & 5x & = & 5x(2x^3 + 3x - 1) \\
& - & 8x^3 & - & 12x & + & 4 = -4(2x^3 + 3x - 1) \\
\hline
& 2x^5 & + & 10x^4 & - & 5x^3 & + & 14x^2 & - & 17x & + & 4 & \text{sum of the above}
\end{array}
\]

In practice, we would omit the reasons (equalities) listed on the right in the last four lines.

We may consider polynomials in more than one variable. For example, a polynomial in two variables, \(x\) and \(y\), is a finite sum of terms, each of the form \(ax^my^k\) for some real number \(a\) and nonnegative integers \(m\) and \(k\). An example is

\[
3x^4y + 2x^3y^5 + 7x^2 - 4xy + 8y - 5.
\]
Other polynomials may involve three variables—such as \(x, y, z \)—or, for that matter, any number of variables. Addition, subtraction, and multiplication are performed using properties of real numbers, just as for polynomials in one variable.

The next example illustrates division of a polynomial by a monomial.

Example 4 Dividing a polynomial by a monomial

Express as a polynomial in \(x \) and \(y \):

\[
rac{6x^2y^3 + 4x^3y^2 - 10xy}{2xy}
\]

Solution

\[
rac{6x^2y^3 + 4x^3y^2 - 10xy}{2xy} = \frac{6x^2y^3}{2xy} + \frac{4x^3y^2}{2xy} - \frac{10xy}{2xy}
\]

divide each term by \(2xy \)

\[
= 3xy^2 + 2x^2y - 5 \quad \text{simplify}
\]

The products listed in the next chart occur so frequently that they deserve special attention. You can check the validity of each formula by multiplication. In (2) and (3), we use either the top sign on both sides or the bottom sign on both sides. Thus, (2) is actually two formulas:

\[
(x + y)^2 = x^2 + 2xy + y^2 \quad \text{and} \quad (x - y)^2 = x^2 - 2xy + y^2
\]

Similarly, (3) represents two formulas.

Product Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ((x + y)(x - y) = x^2 - y^2)</td>
<td>((2a + 3)(2a - 3) = (2a)^2 - 3^2 = 4a^2 - 9)</td>
</tr>
<tr>
<td>(2) ((x ± y)^2 = x^2 ± 2xy + y^2)</td>
<td>((2a - 3)^2 = (2a)^2 - 2(2a)(3) + (3)^2) = (4a^2 - 12a + 9)</td>
</tr>
<tr>
<td>(3) ((x ± y)^3 = x^3 ± 3x^2y + 3xy^2 ± y^3)</td>
<td>((2a + 3)^3 = (2a)^3 + 3(2a)^2(3) + 3(2a)(3)^2 + (3)^3) = (8a^3 + 36a^2 + 54a + 27)</td>
</tr>
</tbody>
</table>

Several other illustrations of the product formulas are given in the next example.

Example 5 Using product formulas

Find the product:

(a) \((2r^2 - \sqrt{s})(2r^2 + \sqrt{s})\) \hspace{2cm} (b) \(\left(\sqrt{c} + \frac{1}{\sqrt{c}}\right)^2\) \hspace{2cm} (c) \((2a - 5b)^3\)
SOLUTION

(a) We use product formula 1, with and
\[(2r^2 - \sqrt{s})(2r^2 + \sqrt{s}) = (2r^2)^2 - (\sqrt{s})^2 = 4r^4 - s\]

(b) We use product formula 2, with and
\[
\left(\sqrt{c} + \frac{1}{\sqrt{c}}\right)^2 = (\sqrt{c})^2 + 2 \cdot \sqrt{c} \cdot \frac{1}{\sqrt{c}} + \left(\frac{1}{\sqrt{c}}\right)^2 \\
= c + 2 + \frac{1}{c}
\]

Note that the last expression is not a polynomial.

(c) We use product formula 3, with and :
\[(2a - 5b)^3 = (2a)^3 - 3(2a)^2(5b) + 3(2a)(5b)^2 - (5b)^3 = 8a^3 - 60a^2b + 150ab^2 - 125b^3\]

If a polynomial is a product of other polynomials, then each polynomial in the product is a factor of the original polynomial. Factoring is the process of expressing a sum of terms as a product. For example, since \(x^2 - 9 = (x + 3)(x - 3)\), the polynomials \(x + 3\) and \(x - 3\) are factors of \(x^2 - 9\).

Factoring is an important process in mathematics, since it may be used to reduce the study of a complicated expression to the study of several simpler expressions. For example, properties of the polynomial \(x^2 - 9\) can be determined by examining the factors \(x + 3\) and \(x - 3\). As we shall see in Chapter 2, another important use for factoring is in finding solutions of equations.

We shall be interested primarily in nontrivial factors of polynomials—that is, factors that contain polynomials of positive degree. However, if the coefficients are restricted to integers, then we usually remove a common integral factor from each term of the polynomial. For example,
\[4x^2y + 8z^3 = 4(x^2y + 2z^3)\]

A polynomial with coefficients in some set \(S\) of numbers is prime, or irreducible over \(S\), if it cannot be written as a product of two polynomials of positive degree with coefficients in \(S\). A polynomial may be irreducible over one set \(S\) but not over another. For example, \(x^2 - 2\) is irreducible over the rational numbers, since it cannot be expressed as a product of two polynomials of positive degree that have rational coefficients. However, \(x^2 - 2\) is not irreducible over the real numbers, since we can write
\[x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})\]
Similarly, \(x^2 + 1 \) is irreducible over the real numbers, but, as we shall see in Section 2.4, not over the complex numbers.

Every polynomial \(ax + b \) of degree 1 is irreducible.

Before we factor a polynomial, we must specify the number system (or set) from which the coefficients of the factors are to be chosen. In this chapter we shall use the rule that if a polynomial has integral coefficients, then the factors should be polynomials with integral coefficients. To factor a polynomial means to express it as a product of irreducible polynomials.

The greatest common factor (gcf) of an expression is the product of the factors that appear in each term, with each of these factors raised to the smallest nonzero exponent appearing in any term. In factoring polynomials, it is advisable to first factor out the gcf, as shown in the following illustration.

ILLUSTRATION

Factored Polynomials
- \(8x^2 + 4xy = 4x(2x + y) \)
- \(25x^2 + 25x - 150 = 25(x^2 + x - 6) = 25(x + 3)(x - 2) \)
- \(4x^5y - 9x^3y^3 = x^3y(4x^2 - 9y^2) = x^3y(2x + 3y)(2x - 3y) \)

It is usually difficult to factor polynomials of degree greater than 2. In simple cases, the following factoring formulas may be useful. Each formula can be verified by multiplying the factors on the right-hand side of the equals sign. It can be shown that the factors \(x^2 + xy + y^2 \) and \(x^2 - xy + y^2 \) in the difference and sum of two cubes, respectively, are irreducible over the real numbers.

Factoring Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Difference of two squares: (x^2 - y^2 = (x + y)(x - y))</td>
<td>(9a^2 - 16 = (3a)^2 - (4)^2 = (3a + 4)(3a - 4))</td>
</tr>
<tr>
<td>(2) Difference of two cubes: (x^3 - y^3 = (x - y)(x^2 + xy + y^2))</td>
<td>(8a^3 - 27 = (2a)^3 - (3)^3 = (2a - 3)[(2a)^2 + (2a)(3) + (3)^2] = (2a - 3)(4a^2 + 6a + 9))</td>
</tr>
<tr>
<td>(3) Sum of two cubes: (x^3 + y^3 = (x + y)(x^2 - xy + y^2))</td>
<td>(125a^3 + 1 = (5a)^3 + (1)^3 = (5a + 1)[(5a)^2 - (5a)(1) + (1)^2] = (5a + 1)(25a^2 - 5a + 1))</td>
</tr>
</tbody>
</table>

Several other illustrations of the use of factoring formulas are given in the next two examples.
EXAMPLE 6 Difference of two squares

Factor each polynomial:
(a) $25r^2 - 49s^2$
(b) $81x^4 - y^4$
(c) $16x^4 - (y - 2z)^2$

SOLUTION

(a) We apply the difference of two squares formula, with $x = 5r$ and $y = 7s$:
$$25r^2 - 49s^2 = (5r)^2 - (7s)^2 = (5r + 7s)(5r - 7s)$$

(b) We write $81x^4 = (9x^2)^2$ and $y^4 = (y^2)^2$ and apply the difference of two squares formula twice:
$$81x^4 - y^4 = (9x^2)^2 - (y^2)^2$$
$$= (9x^2 + y^2)(9x^2 - y^2)$$
$$= (9x^2 + y^2)[(3x)^2 - (y^2)]$$
$$= (9x^2 + y^2)(3x + y)(3x - y)$$

(c) We write $16x^4 = (4x^2)^2$ and apply the difference of two squares formula:
$$16x^4 - (y - 2z)^2 = (4x^2)^2 - (y - 2z)^2$$
$$= [(4x^2) + (y - 2z)][(4x^2) - (y - 2z)]$$
$$= (4x^2 + y - 2z)(4x^2 - y + 2z)$$

EXAMPLE 7 Sum and difference of two cubes

Factor each polynomial:
(a) $a^3 + 64b^3$
(b) $8c^6 - 27d^9$

SOLUTION

(a) We apply the sum of two cubes formula, with $x = a$ and $y = 4b$:
$$a^3 + 64b^3 = a^3 + (4b)^3$$
$$= (a + 4b)[a^2 - a(4b) + (4b)^2]$$
$$= (a + 4b)(a^2 - 4ab + 16b^2)$$

(b) We apply the difference of two cubes formula, with $x = 2c^2$ and $y = 3d^3$:
$$8c^6 - 27d^9 = (2c^2)^3 - (3d^3)^3$$
$$= (2c^2 - 3d^3)[(2c^2)^2 + (2c^2)(3d^3) + (3d^3)^2]$$
$$= (2c^2 - 3d^3)(4c^4 + 6c^2d^3 + 9d^6)$$
A factorization of a trinomial $px^2 + qx + r$, where p, q, and r are integers, must be of the form

$$px^2 + qx + r = (ax + b)(cx + d),$$

where a, b, c, and d are integers. It follows that

$$ac = p, \quad bd = r, \quad \text{and} \quad ad + bc = q.$$

Only a limited number of choices for a, b, c, and d satisfy these conditions. If none of the choices work, then $px^2 + qx + r$ is irreducible. Trying the various possibilities, as depicted in the next example, is called the **method of trial and error**. This method is also applicable to trinomials of the form $px^2 + qxy + ry^2$, in which case the factorization must be of the form $(ax + by)(cx + dy)$.

Example 8
Factoring a trinomial by trial and error

Factor $6x^2 - 7x - 3$.

SOLUTION If we write

$$6x^2 - 7x - 3 = (ax + b)(cx + d),$$

then the following relationships must be true:

$$ac = 6, \quad bd = -3, \quad \text{and} \quad ad + bc = -7.$$

If we assume that a and c are both positive, then all possible values are given in the following table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>6</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Thus, if $6x^2 - 7x - 3$ is factorable, then one of the following is true:

$$6x^2 - 7x - 3 = (x + b)(6x + d)$$
$$6x^2 - 7x - 3 = (6x + b)(x + d)$$
$$6x^2 - 7x - 3 = (2x + b)(3x + d)$$
$$6x^2 - 7x - 3 = (3x + b)(2x + d)$$

We next consider all possible values for b and d. Since $bd = -3$, these are as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>3</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>-3</td>
<td>3</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Trying various (possibly all) values, we arrive at \(b = -3 \) and \(d = 1 \); that is,
\[
6x^2 - 7x - 3 = (2x - 3)(3x + 1).
\]
As a check, you should multiply the final factorization to see whether the original polynomial is obtained.

The method of trial and error illustrated in Example 8 can be long and tedious if the coefficients of the polynomial are large and have many prime factors. We will show a factoring method in Section 2.3 that can be used to factor any trinomial of the form of the one in Example 8—regardless of the size of the coefficients. For simple cases, it is often possible to arrive at the correct choice rapidly.

Example 9 Factoring polynomials

Factor:

(a) \(12x^2 - 36xy + 27y^2 \)
(b) \(4x^4y - 11x^3y^2 + 6x^2y^3 \)

Solution

(a) Since each term has 3 as a factor, we begin by writing
\[
12x^2 - 36xy + 27y^2 = 3(4x^2 - 12xy + 9y^2).
\]
A factorization of \(4x^2 - 12xy + 9y^2 \) as a product of two first-degree polynomials must be of the form
\[
4x^2 - 12xy + 9y^2 = (ax + by)(cx + dy),
\]
with \(ac = 4, \quad bd = 9, \quad \text{and} \quad ad + bc = -12. \)

Using the method of trial and error, as in Example 8, we obtain
\[
4x^2 - 12xy + 9y^2 = (2x - 3y)(2x - 3y) = (2x - 3y)^2.
\]
Thus, \(12x^2 - 36xy + 27y^2 = 3(4x^2 - 12xy + 9y^2) = 3(2x - 3y)^2. \)

(b) Since each term has \(x^2y \) as a factor, we begin by writing
\[
4x^4y - 11x^3y^2 + 6x^2y^3 = x^2y(4x^2 - 11xy + 6y^2).
\]
By trial and error, we obtain the factorization
\[
4x^4y - 11x^3y^2 + 6x^2y^3 = x^2y(4x - 3y)(x - 2y).
\]

If a sum contains four or more terms, it may be possible to group the terms in a suitable manner and then find a factorization by using distributive properties. This technique, called **factoring by grouping**, is illustrated in the next example.
EXAMPLE 10 Factoring by grouping

Factor:
(a) \(4ac + 2bc - 2ad - bd\) \hspace{1cm} (b) \(3x^3 + 2x^2 - 12x - 8\)
(c) \(x^2 - 16y^2 + 10x + 25\)

SOLUTION

(a) We group the first two terms and the last two terms and then proceed as follows:

\[
4ac + 2bc - 2ad - bd = (4ac + 2bc) - (2ad + bd) = 2c(2a + b) - d(2a + b)
\]

At this stage we have not factored the given expression because the right-hand side has the form

\[2ck - dk \text{ with } k = 2a + b.\]

However, if we factor out \(k\), then

\[2ck - dk = (2c - d)k = (2c - d)(2a + b)\].

Hence,

\[
4ac + 2bc - 2ad - bd = 2c(2a + b) - d(2a + b) = (2c - d)(2a + b).
\]

Note that if we factor \(2ck - dk\) as \(k(2c - d)\), then the last expression is \((2a + b)(2c - d)\).

(b) We group the first two terms and the last two terms and then proceed as follows:

\[
3x^3 + 2x^2 - 12x - 8 = (3x^3 + 2x^2) - (12x + 8) = x^2(3x + 2) - 4(3x + 2) = (x^2 - 4)(3x + 2)
\]

Finally, using the difference of two squares formula for \(x^2 - 4\), we obtain the factorization:

\[
3x^3 + 2x^2 - 12x - 8 = (x + 2)(x - 2)(3x + 2)
\]

(c) First we rearrange and group terms, and then we apply the difference of two squares formula, as follows:

\[
x^2 - 16y^2 + 10x + 25 = (x^2 + 10x + 25) - 16y^2 = (x + 5)^2 - (4y)^2 = [(x + 5) + 4y][(x + 5) - 4y] = (x + 4y + 5)(x - 4y + 5)
\]
1.3 Exercises

Exer. 1–44: Express as a polynomial.
1. \((3x^3 + 4x^2 - 7x + 1) + (9x^3 - 4x^2 - 6x)\)
2. \((7x^3 + 2x^2 - 11x) + (-3x^3 - 2x^2 + 5x - 3)\)
3. \((4x^3 + 5x - 3) - (3x^3 + 2x^2 + 5x - 7)\)
4. \((6x^3 - 2x^2 + x - 2) - (8x^2 - x - 2)\)
5. \((2x + 5)(3x - 7)\)
6. \((3x - 4)(2x + 9)\)
7. \((5x + 7y)(3x + 2y)\)
8. \((4x - 3y)(x - 5y)\)
9. \((2u + 3)(u - 4) + 4u(u - 2)\)
10. \((3u - 1)(u + 2) + 7u(u + 1)\)
11. \((3x + 5)(2x^2 + 9x - 5)\)
12. \((7x - 4)(x^3 - x^2 + 6)\)
13. \((r^2 + 2r - 5)(3r^2 - t + 2)\)
14. \((r^2 - 8r - 2)(-r^2 + 3r - 1)\)
15. \((x + 1)(2x^2 - 2)(x^3 + 5)\)
16. \((2x - 1)(x^2 - 5)(x^3 - 1)\)
17. \(\frac{8x^3y^3 - 10x^2y}{2x^2y}\)
18. \(\frac{6a^6b^3 - 9a^2b^2 + 3ab^4}{3ab^2}\)
19. \(\frac{3u^3v^4 - 2u^2v^2 + (u^2v^3)^2}{u^2v^2}\)
20. \(\frac{6x^2yz^3 - xy^2z}{xyz}\)
21. \((2x + 3y)(2x - 3y)\)
22. \((5x + 4y)(5x - 4y)\)
23. \((x^2 + 2y)(x^2 - 2y)\)
24. \((3x + y^3)(3x - y^3)\)
25. \((x^2 + 9)(x^2 - 4)\)
26. \((x^2 + 1)(x^2 - 16)\)
27. \((3x + 2y)^2\)
28. \((5x - 4y)^2\)
29. \((x^2 - 3y^2)^2\)
30. \((2x^2 + 5y^2)^2\)
31. \((x + 2)^2(x - 2)^2\)
32. \((x + y)^2(x - y)^2\)
33. \((\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})\)
34. \((\sqrt{x} + \sqrt{y})^3(\sqrt{x} - \sqrt{y})^2\)
35. \((x^{10} - y^{10})(x^{20} + x^{10}y^{10} + y^{20})\)
36. \((x^{10} + y^{10})(x^{20} - x^{10}y^{10} + y^{20})\)
37. \((x - 2y)^3\)
38. \((x + 3y)^3\)
39. \((2x + 3y)^3\)
40. \((3x - 4y)^3\)
41. \((a + b - c)^2\)
42. \((x^2 + x + 1)^2\)
43. \((2x + y - 3z)^2\)
44. \((x - 2y + 3z)^2\)

Exer. 45–102: Factor the polynomial.
45. \(rs + 4st\)
46. \(4u^2 - 2uv\)
47. \(3a^2b^2 - 6a^2b\)
48. \(10xy + 15xy^2\)
49. \(3x^2y^3 - 9x^2y^2\)
50. \(16x^3y^2 + 8x^3y^3\)
51. \(15x^3y^5 - 25x^4y^2 + 10x^6y^4\)
52. \(121r^3s^4 + 77r^3s^4 - 55r^4s^3\)
53. \(8x^2 - 53x - 21\)
54. \(7x^2 + 10x - 8\)
55. \(x^2 + 3x + 4\)
56. \(3x^3 - 4x + 2\)
57. \(6x^2 + 7x - 20\)
58. \(12x^2 - x - 6\)
59. \(12x^2 - 29x + 15\)
60. \(21x^2 + 41x + 10\)
61. \(4x^2 - 20x + 25\)
62. \(9x^2 - 24x + 16\)
63. \(25z^2 + 30z + 9\)
64. \(16z^2 - 56z + 49\)
65. \(45x^2 + 38xy + 8y^2\)
66. \(50x^2 + 45xy - 18y^2\)
67. \(36r^2 - 25t^2\)
68. \(81r^2 - 16t^2\)
69. \(z^4 - 64w^2\)
70. \(9y^4 - 121x^2\)
71. \(x^4 - 4x^2\)
72. \(x^2 - 25x\)
73. \(x^2 + 25\)
74. \(4x^2 + 9\)
75. \(75x^2 - 48y^2\)
76. \(64x^2 - 36y^2\)
77. \(64x^3 + 27\)
78. \(125x^3 - 8\)
79. \(64x^3 - y^6\)
80. \(216x^3 + 125y^3\)
81. \(343x^3 + y^9\)
82. \(x^6 - 27y^3\)
83. \(125 - 27x^3\)
84. \(x^3 + 64\)
85. \(2ax - 6bx + ay - 3by\)
86. \(2ay^2 - axy + 6xy - 3x^2\)
87. \(3x^3 + 3x^2 - 27x - 27\)
88. \(5x^3 + 10x^2 - 20x - 40\)
89. \(x^4 + 2x^3 - x - 2\)
90. \(x^4 - 3x^3 + 8x - 24\)
91. \(a^2 - ab + ab^2 - b^3\)
92. \(6w^4 + 17w^4 + 12\)
93. \(a^6 - b^6\)
94. \(x^8 - 16\)
95. \(x^2 + 4x + 4 - 9y^2\)
96. \(x^2 - 4y^2 - 6x + 9\)
97. \(y^2 - x^2 + 8y + 16\)
98. \(y^2 + 9 - 6y - 4x^2\)
Exercise 103

Exer. 103–104: The ancient Greeks gave geometric proofs of the factoring formulas for the difference of two squares and the difference of two cubes. Establish the formula for the special case described.

103 Find the areas of regions I and II in the figure to establish the difference of two squares formula for the special case \(x > y \).

104 Find the volumes of boxes I, II, and III in the figure to establish the difference of two cubes formula for the special case \(x > y \).

Exercise 104

105 Calorie requirements The basal energy requirement for an individual indicates the minimum number of calories necessary to maintain essential life-sustaining processes such as circulation, regulation of body temperature, and respiration. Given a person’s sex, weight \(w \) (in kilograms), height \(h \) (in centimeters), and age \(y \) (in years), we can estimate the basal energy requirement in calories using the following formulas, where \(C_f \) and \(C_m \) are the calories necessary for females and males, respectively:

\[
C_f = 66.5 + 13.8w + 5h - 6.8y \\
C_m = 655 + 9.6w + 1.9h - 4.7y
\]

(a) Determine the basal energy requirements first for a 25-year-old female weighing 59 kilograms who is 163 centimeters tall and then for a 55-year-old male weighing 75 kilograms who is 178 centimeters tall.

(b) Discuss why, in both formulas, the coefficient for \(y \) is negative but the other coefficients are positive.

A fractional expression is a quotient of two algebraic expressions. As a special case, a rational expression is a quotient \(p/q \) of two polynomials \(p \) and \(q \). Since division by zero is not allowed, the domain of \(p/q \) consists of all real numbers except those that make the denominator zero. Two illustrations are given in the chart.

Rational Expressions

<table>
<thead>
<tr>
<th>Quotient</th>
<th>Denominator is zero if</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{6x^2 - 5x + 4}{x^2 - 9})</td>
<td>(x = \pm 3)</td>
<td>All (x \neq \pm 3)</td>
</tr>
<tr>
<td>(\frac{x^3 - 3x^2y + 4y^2}{y - x^3})</td>
<td>(y = x^3)</td>
<td>All (x) and (y) such that (y \neq x^3)</td>
</tr>
</tbody>
</table>
In most of our work we will be concerned with rational expressions in which both numerator and denominator are polynomials in only one variable.

Since the variables in a rational expression represent real numbers, we may use the properties of quotients in Section 1.1, replacing the letters a, b, c, and d with polynomials. The following property is of particular importance, where $bd \neq 0$:

$$\frac{ad}{bd} = \frac{a}{b} \cdot \frac{d}{d} = \frac{a}{b} \cdot 1 = \frac{a}{b}$$

We sometimes describe this simplification process by saying that a common nonzero factor in the numerator and denominator of a quotient may be canceled. In practice, we usually show this cancellation by means of a slash through the common factor, as in the following illustration, where all denominators are assumed to be nonzero.

ILLUSTRATIONCanceled Common Factors

- $\frac{ad}{bd} = \frac{a}{b}$
- $\frac{mn}{pq} = \frac{m}{p}$
- $\frac{pqr}{rsv} = \frac{q}{v}$

A rational expression is simplified, or reduced to lowest terms, if the numerator and denominator have no common polynomial factors of positive degree and no common integral factors greater than 1. To simplify a rational expression, we factor both the numerator and the denominator into prime factors and then, assuming the factors in the denominator are not zero, cancel common factors, as in the following illustration.

ILLUSTRATIONSimplified Rational Expressions

- $\frac{3x^2 - 5x - 2}{x^2 - 4} = \frac{(3x + 1)(x - 2)}{(x + 2)(x - 2)} = \frac{3x + 1}{x + 2}$ if $x \neq 2$
- $\frac{2 - x - 3x^2}{6x^2 - x - 2} = \frac{-(3x^2 + x - 2)}{6x^2 - x - 2} = \frac{(3x - 2)(x + 1)}{(3x - 2)(2x + 1)} = \frac{x + 1}{2x + 1}$ if $x \neq 5, x \neq -4$
- $\frac{(x^2 + 8x + 16)(x - 5)}{(x^2 - 5x)(x^2 - 16)} = \frac{(x + 4)^2(x - 5)}{x(x - 5)(x + 4)(x - 4)} = \frac{x + 4}{x(x - 4)}$

As shown in the next example, when simplifying a product or quotient of rational expressions, we often use properties of quotients to obtain one rational expression. Then we factor the numerator and denominator and cancel common factors, as we did in the preceding illustration.
EXAMPLE 1 Products and quotients of rational expressions

Perform the indicated operation and simplify:

(a) \(\frac{x^2 - 6x + 9}{x^2 - 1} \cdot \frac{2x - 2}{x - 3} \)
(b) \(\frac{x + 2}{2x - 3} \div \frac{x^2 - 4}{2x^2 - 3x} \)

SOLUTION

(a) \(\frac{x^2 - 6x + 9}{x^2 - 1} \cdot \frac{2x - 2}{x - 3} = \frac{(x^2 - 6x + 9)(2x - 2)}{(x^2 - 1)(x - 3)} \)

\(= \frac{(x - 3)\frac{1}{2} \cdot 2(x - 1)}{(x + 1)(x - 1)(x - 3)} \)

if \(x \neq 3, x \neq 1 \)
\(\downarrow 2(x - 3) \)
\(= \frac{x + 1}{x - 1} \)

(b) \(\frac{x + 2}{2x - 3} \div \frac{x^2 - 4}{2x^2 - 3x} = \frac{x + 2}{2x - 3} \cdot \frac{2x^2 - 3x}{x^2 - 4} \)

\(= \frac{(x + 2)(2x - 3)}{(2x - 3)(x + 2)(x - 2)} \)

if \(x \neq -2, x \neq 3/2 \)
\(\downarrow x \)
\(= \frac{x}{x - 2} \)

To add or subtract two rational expressions, we usually find a common denominator and use the following properties of quotients:

\[\frac{a}{d} + \frac{c}{d} = \frac{a + c}{d} \quad \text{and} \quad \frac{a}{d} - \frac{c}{d} = \frac{a - c}{d} \]

If the denominators of the expressions are not the same, we may obtain a common denominator by multiplying the numerator and denominator of each fraction by a suitable expression. We usually use the least common denominator (lcd) of the two quotients. To find the lcd, we factor each denominator into primes and then form the product of the different prime factors, using the largest exponent that appears with each prime factor. Let us begin with a numerical example of this technique.

EXAMPLE 2 Adding fractions using the lcd

Express as a simplified rational number:

\(\frac{7}{24} + \frac{5}{18} \)
SOLUTION The prime factorizations of the denominators 24 and 18 are $24 = 2^3 \cdot 3$ and $18 = 2 \cdot 3^2$. To find the lcd, we form the product of the different prime factors, using the largest exponent associated with each factor. This gives us $2^3 \cdot 3^2$. We now change each fraction to an equivalent fraction with denominator $2^3 \cdot 3^2$ and add:

$$\frac{7}{24} + \frac{5}{18} = \frac{7}{2^3 \cdot 3} + \frac{5}{2 \cdot 3^2}$$

$$= \frac{7}{2^3 \cdot 3} \cdot \frac{3}{3} + \frac{5}{2 \cdot 3^2} \cdot \frac{2^2}{2^2}$$

$$= \frac{21}{2^3 \cdot 3^2} + \frac{20}{2^3 \cdot 3^2}$$

$$= \frac{41}{2^3 \cdot 3^2}$$

$$= \frac{41}{72}$$

The method for finding the lcd for rational expressions is analogous to the process illustrated in Example 2. The only difference is that we use factorizations of polynomials instead of integers.

EXAMPLE 3 Sums and differences of rational expressions

Perform the operations and simplify:

$$\frac{6}{x(3x - 2)} + \frac{5}{3x - 2} - \frac{2}{x^2}$$

SOLUTION The denominators are already in factored form. The lcd is $x^2(3x - 2)$. To obtain three quotients having the denominator $x^2(3x - 2)$, we multiply the numerator and denominator of the first quotient by x, those of the second by x^2, and those of the third by $3x - 2$, which gives us

$$\frac{6}{x(3x - 2)} + \frac{5}{3x - 2} - \frac{2}{x^2} = \frac{6}{x(3x - 2)} \cdot \frac{x}{x} + \frac{5}{3x - 2} \cdot \frac{x^2}{x^2} - \frac{2}{x^2} \cdot \frac{3x - 2}{3x - 2}$$

$$= \frac{6x}{x^2(3x - 2)} + \frac{5x^2}{x^2(3x - 2)} - \frac{2(3x - 2)}{x^2(3x - 2)}$$

$$= \frac{6x + 5x^2 - 2(3x - 2)}{x^2(3x - 2)}$$

$$= \frac{5x^2 + 4}{x^2(3x - 2)}.$$
EXAMPLE 4 Simplifying sums of rational expressions

Perform the operations and simplify:

\[
\frac{2x + 5}{x^2 + 6x + 9} + \frac{x}{x^2 - 9} + \frac{1}{x - 3}
\]

SOLUTION We begin by factoring denominators:

\[
\frac{2x + 5}{x^2 + 6x + 9} + \frac{x}{x^2 - 9} + \frac{1}{x - 3} = \frac{2x + 5}{(x + 3)^2} + \frac{x}{(x + 3)(x - 3)} + \frac{1}{x - 3}
\]

Since the lcd is \((x + 3)^2(x - 3)\), we multiply the numerator and denominator of the first quotient by \(x - 3\), those of the second by \(x + 3\), and those of the third by \((x + 3)^2\) and then add:

\[
\frac{(2x + 5)(x - 3)}{(x + 3)^2(x - 3)} + \frac{x(x + 3)}{(x + 3)^2(x - 3)} + \frac{(x + 3)^2}{(x + 3)^2(x - 3)} = \frac{(2x^2 - x - 15) + (x^2 + 3x) + (x^2 + 6x + 9)}{(x + 3)^2(x - 3)}
\]

\[
= \frac{4x^2 + 8x - 6}{(x + 3)^2(x - 3)} = \frac{2(2x^2 + 4x - 3)}{(x + 3)^2(x - 3)}
\]

A complex fraction is a quotient in which the numerator and/or the denominator is a fractional expression. Certain problems in calculus require simplifying complex fractions of the type given in the next example.

EXAMPLE 5 Simplifying a complex fraction

Simplify the complex fraction:

\[
\frac{2}{x + 3} - \frac{2}{a + 3}
\]

\[
\frac{2}{x - a}
\]

SOLUTION We change the numerator of the given expression into a single quotient and then use a property for simplifying quotients:

\[
\frac{2}{x + 3} - \frac{2}{a + 3} = \frac{2(a + 3) - 2(x + 3)}{(x + 3)(a + 3)} \quad \text{combine fractions in the numerator}
\]

\[
= \frac{2a - 2x}{(x + 3)(a + 3)} \cdot \frac{1}{x - a} \quad \text{simplify; property of quotients}
\]

\[
= \frac{2(a - x)}{(x + 3)(a + 3)(x - a)} \quad \text{factor } 2a - 2x; \text{ property of quotients}
\]

if \(x \neq a\)

\[
\downarrow
\]

\[
= -\frac{2}{(x + 3)(a + 3)} \quad \text{replace } \frac{a - x}{x - a} \text{ with } -1
\]
An alternative method is to multiply the numerator and denominator of the given expression by \((x + 3)(a + 3)\), the \(\text{lcd}\) of the numerator and denominator, and then simplify the result.

Some quotients that are not rational expressions contain denominators of the form \(a + \sqrt{b}\) or \(\sqrt{a} + \sqrt{b}\); as in the next example, these quotients can be simplified by multiplying the numerator and denominator by the \textbf{conjugate} \(a - \sqrt{b}\) or \(\sqrt{a} - \sqrt{b}\), respectively. Of course, if \(a - \sqrt{b}\) appears, multiply by \(a + \sqrt{b}\) instead.

\textbf{Example 6} \hspace{1em} \textbf{Rationalizing a denominator}

Rationalize the denominator:

\[
\frac{1}{\sqrt{x} + \sqrt{y}}
\]

\textbf{Solution}

\[
\begin{align*}
\frac{1}{\sqrt{x} + \sqrt{y}} &= \frac{1}{\sqrt{x} + \sqrt{y}} \cdot \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} - \sqrt{y}} \\
&= \frac{\sqrt{x} - \sqrt{y}}{(\sqrt{x})^2 - (\sqrt{y})^2} \\
&= \frac{\sqrt{x} - \sqrt{y}}{x - y}
\end{align*}
\]

In calculus it is sometimes necessary to rationalize the \textit{numerator} of a quotient, as shown in the following example.

\textbf{Example 7} \hspace{1em} \textbf{Rationalizing a numerator}

If \(h \neq 0\), rationalize the numerator of

\[
\frac{\sqrt{x} + h - \sqrt{x}}{h}
\]

\textbf{Solution}

\[
\begin{align*}
\frac{\sqrt{x} + h - \sqrt{x}}{h} &= \frac{\sqrt{x} + h - \sqrt{x}}{h} \cdot \frac{\sqrt{x} + h + \sqrt{x}}{\sqrt{x} + h + \sqrt{x}} \\
&= \frac{(\sqrt{x} + h)^2 - (\sqrt{x})^2}{h(\sqrt{x} + h + \sqrt{x})} \\
&= \frac{(x + h) - x}{h(\sqrt{x} + h + \sqrt{x})} \\
&= \frac{h}{h(\sqrt{x} + h + \sqrt{x})} \\
&= \frac{1}{\sqrt{x} + h + \sqrt{x}}
\end{align*}
\]

(continued)
It may seem as though we have accomplished very little, since radicals occur in the denominator. In calculus, however, it is of interest to determine what is true if \(h \) is very close to zero. Note that if we use the given expression we obtain the following:

\[
\frac{\sqrt{x+h} - \sqrt{x}}{h} \approx \frac{\sqrt{x + 0} - \sqrt{x}}{0} = \frac{0}{0},
\]

a meaningless expression. If we use the rationalized form, however, we obtain the following information:

\[
\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{1}{\sqrt{x+h} + \sqrt{x}} \\
\approx \frac{1}{2\sqrt{x}}.
\]

Certain problems in calculus require simplifying expressions of the type given in the next example.

Example 8 Simplifying a fractional expression

Simplify, if \(h \neq 0 \):

\[
\frac{1}{(x + h)^2} - \frac{1}{x^2}.
\]

Solution

\[
\frac{\frac{1}{(x + h)^2} - \frac{1}{x^2}}{h} = \frac{x^2 - (x + h)^2}{(x + h)^2x^2} \cdot \frac{1}{h} \quad \text{combine quotients in numerator}
\]

\[
= \frac{x^2 - (x^2 + 2hx + h^2)}{(x + h)^2x^2} \cdot \frac{1}{h} \quad \text{square } x + h; \text{ property of quotients}
\]

\[
= \frac{x^2 - x^2 - 2hx - h^2}{(x + h)^2x^2h} \quad \text{remove parentheses}
\]

\[
= \frac{-h(2x + h)}{(x + h)^2x^2h} \quad \text{simplify; factor out } -h
\]

\[
= -\frac{2x + h}{(x + h)^2x^2} \quad \text{cancel } h \neq 0
\]

Problems of the type given in the next example also occur in calculus.

Example 9 Simplifying a fractional expression

Simplify:

\[
\frac{3x^2(2x + 5)^{1/2} - x^3(2x^2 + 2x + 5)^{-1/2}(2)}{[(2x + 5)^{1/2}]^2}
\]
SOLUTION One way to simplify the expression is as follows:

\[
\frac{3x^2(2x + 5)^{1/2} - x^3\left(\frac{1}{2}\right)(2x + 5)^{-1/2}(2)}{(2x + 5)^{1/2}}
\]

\[
= \frac{3x^2(2x + 5)^{1/2} - x^3}{2x + 5}
\]

\[
= \frac{3x^2(2x + 5) - x^3}{(2x + 5)^{1/2}}
\]

\[
= \frac{6x^3 + 15x^2 - x^3}{(2x + 5)^{1/2}} \cdot \frac{1}{2x + 5}
\]

\[
= \frac{5x^3 + 15x^2}{(2x + 5)^{3/2}}
\]

An alternative simplification is to eliminate the negative power, \(-\frac{1}{2}\), in the given expression, as follows:

\[
\frac{3x^2(2x + 5)^{1/2} - x^3\left(\frac{1}{2}\right)(2x + 5)^{-1/2}(2)}{(2x + 5)^{1/2}}
\]

\[
= \frac{3x^2(2x + 5) - x^3}{(2x + 5)^{1/2}}
\]

The remainder of the simplification is similar.

A third method of simplification is to first factor out the gcf. In this case, the common factors are \(x\) and \((2x + 5)\), and the smallest exponents are 2 and \(-\frac{1}{2}\), respectively. Thus, the gcf is \(x^2(2x + 5)^{-1/2}\), and we factor the numerator and simplify as follows:

\[
\frac{x^2(2x + 5)^{1/2}[3(2x + 5)^{1/2} - x]}{(2x + 5)^{3/2}} = \frac{x^2(5x + 15)}{(2x + 5)^{3/2}} = \frac{5x^2(x + 3)}{(2x + 5)^{3/2}}
\]

One of the problems in calculus is determining the values of \(x\) that make the numerator equal to zero. The simplified form helps us answer this question with relative ease—the values are 0 and -3.

1.4 Exercises

Exer. 1–4: Write the expression as a simplified rational number.

1. \(\frac{3}{50} + \frac{7}{30}\)
2. \(\frac{4}{63} + \frac{5}{42}\)
3. \(\frac{5}{24} - \frac{3}{20}\)
4. \(\frac{11}{54} - \frac{7}{72}\)

Exer. 5–48: Simplify the expression.

5. \(\frac{2x^2 + 7x + 3}{2x^2 - 7x - 4}\)
6. \(\frac{2x^2 + 9x - 5}{3x^2 + 17x + 10}\)
7. \(\frac{y^2 - 25}{y^3 - 125}\)
8. \(\frac{y^2 - 9}{y^3 + 27}\)
Exer. 55–60: Rationalize the numerator.

55 \[\frac{\sqrt{a} - \sqrt{b}}{a^2 - b^2} \]

56 \[\frac{\sqrt{b} + \sqrt{c}}{b^2 - c^2} \]

57 \[\sqrt{2(x + h) + 1} - \sqrt{2x + 1} \]

58 \[\frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x} \sqrt{x + h}} \]

59 \[\frac{\sqrt{1} - x - h - \sqrt{1 - x}}{h} \]

60 \[\frac{\sqrt{x + h} - \sqrt{x}}{h} \] (Hint: Compare with Exercise 53.)
Chapter 1 Review Exercises

1 Express as a simplified rational number:
 \(\frac{2}{3} \cdot \frac{5}{8}\) \(\frac{3}{4} + \frac{6}{5}\) \(\frac{5}{8} - \frac{6}{7}\) \(\frac{3}{4} \div \frac{6}{5}\)

2 Replace the symbol □ with either <, >, or = to make the resulting statement true.
 (a) \(-0.1 \, □ \, -0.001\) (b) \(\sqrt{9} \, □ \, -3\) (c) \(\frac{1}{6} \, □ \, 0.166\)

3 Express the statement as an inequality.
 (a) \(x\) is negative.
 (b) \(a\) is between \(\frac{1}{2}\) and \(\frac{3}{2}\).
 (c) The absolute value of \(x\) is not greater than 4.

4 Rewrite without using the absolute value symbol, and simplify:
 (a) \(|-7|\) (b) \(|-5|\) (c) \(|3^1 - 2^1|\)

5 If points \(A, B,\) and \(C\) on a coordinate line have coordinates \(-8, 4,\) and \(-3,\) respectively, find the distance:
 (a) \(d(A, C)\) (b) \(d(C, A)\) (c) \(d(B, C)\)

6 Express the indicated statement as an inequality involving the absolute value symbol.
 (a) \(d(x, -2)\) is at least 7.
 (b) \(d(4, x)\) is less than 4.

Exer. 7–8: Rewrite the expression without using the absolute value symbol, and simplify the result.

7 \(|x + 3|\) if \(x \leq -3\)

8 \(|(x - 2)(x - 3)|\) if \(2 < x < 3\)

9 Determine whether the expression is true for all values of the variables, whenever the expression is defined.
 (a) \((x + y)^2 = x^2 + y^2\) (b) \(\frac{1}{\sqrt{x} + y} = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}}\)
 (c) \(\frac{1}{\sqrt{c} - \sqrt{d}} = \frac{\sqrt{c} + \sqrt{d}}{c - d}\)

10 Express the number in scientific form.
 (a) \(93,700,000,000\) (b) \(0.00000402\)
11 Express the number in decimal form.
 (a) \(6.8 \times 10^7 \)
 (b) \(7.3 \times 10^{-4} \)

12 (a) Approximate \(|\sqrt{5} - 17^2| \) to four decimal places.
 (b) Express the answer in part (a) in scientific notation accurate to four significant figures.

Exer. 13–14: Express the number in the form \(\frac{a}{b} \), where \(a \) and \(b \) are integers.
13 \(-3^2 + 20 + 27^{-2/3}\)
14 \((\frac{1}{2})^0 - 1^2 + 16^{-3/4}\)

Exer. 15–40: Simplify the expression, and rationalize the denominator when appropriate.
15 \((3a^2b)^3(2ab^4)\)
16 \(\frac{6r^3y^2}{5e^2y^2}\)

17 \(\frac{(3x^2y^{-3})^{-2}}{x^{-5}y^2}\)
18 \(\left(\frac{a^{2/3}b^{3/2}}{ab}\right)^2\)

19 \((-2p^3q)^{-3}\left(\frac{p}{4q^2}\right)^2\)
20 \(c^{-4/3}c^3c^{-1/6}\)

21 \(\left(\frac{xy^{-1}}{\sqrt{z}}\right)^4 + \left(\frac{x^{1/3}y^3}{z}\right)^3\)
22 \(\left(\frac{-64x^3y^3}{z^8}\right)^{2/3}\)

23 \([a^{2/3}b^{-2}]^{-3}\)
24 \(\frac{(3u^3v^3w^3)^{1/3}}{(2uw^3w^3)^4}\)

25 \(\frac{r^{-1} + s^{-1}}{(rs)^{-1}}\)
26 \((u + v)^3(u + v)^{-2}\)

27 \(s^{5/2}x^{4/3}x^{1/6}\)
28 \(x^{-2} - y^{-1}\)

29 \(\sqrt{(x^4y^4)^6}\)
30 \(\sqrt[3]{8x^3y^4}z^2\)

31 \(\sqrt{\frac{c^3}{c}}\)
32 \(\sqrt{\frac{a^2b^3}{c}}\)

33 \(\sqrt[4]{4xy} \sqrt[4]{2c^2}\)
34 \(\sqrt[3]{(-4a^2b^3c)^{2}}\)

35 \(\frac{1}{\sqrt[4]{7}} \left(\frac{1}{\sqrt[4]{7}} - 1\right)\)
36 \(\sqrt{(c^2d^2)^3}\)

37 \(\sqrt[3]{12v^7y^3} \sqrt[3]{3xy^5}\)
38 \(\sqrt{(a + 2b)^3}\)

39 \(\sqrt{\frac{1}{2\pi}}\)
40 \(\sqrt{\frac{x^2}{9y}}\)

Exer. 41–44: Rationalize the denominator.
41 \(\frac{1 - \sqrt{x}}{1 + \sqrt{x}}\)
42 \(\frac{1}{\sqrt{a} + \sqrt{a - 2}}\)

43 \(\frac{81x^2 - y^2}{3\sqrt{x} + \sqrt{y}}\)
44 \(\frac{3 + \sqrt{x}}{3 - \sqrt{x}}\)

Exer. 45–62: Express as a polynomial.
45 \((3x^3 - 4x^2 + x - 7) + (x^4 - 2x^3 + 3x^2 + 5)\)
46 \((3x^4 - 3x^2 + 1) - (x^3 + 4x^2 - 4)\)
47 \((x + 4)(x + 3) - (2x - 1)(x - 5)\)
48 \((4x - 5)(2x^2 + 3x - 7)\)
49 \((3y^3 - 2y^2 + y + 4)(y^2 - 3)\)
50 \((3x + 2)(x - 5)(5x + 4)\)
51 \((a - b)(a^2 + a^2b + ab^2 + b^3)\)
52 \(\frac{9p^3q^3 - 6p^2q^4 + 5p^3q^2}{3p^2q^2}\)
53 \((3a - 5b)(2a + 7b)\)
54 \((4r^2 - 3s)\)
55 \((13a^2 + 4b)(13a^2 - 4b)\)
56 \((a^2 - a^2)\)
57 \((3y + x)^2\)
58 \((c^2 - d^3)^2\)
59 \((2a + b)^3\)
60 \((x^2 - 2x + 3)^2\)
61 \((3x + 2y)^2(3x - 2y)^2\)
62 \((a + b + c + d)^2\)

Exer. 63–78: Factor the polynomial.
63 \(60xw + 70w\)
64 \(2r^3s^3 - 8r^2s^3\)
65 \(28x^2 + 4x - 9\)
66 \(16a^4 + 24ab^2 + 9b^4\)
67 \(2wy + 3yx - 8wz - 12xy\)
68 \(2c^3 - 12c^3 + 3c - 18\)
69 \(8x^3 + 64y^3\)
70 \(uv^4 - u^4v\)
71 \(p^8 - q^8\)
72 \(x^4 - 8x^3 + 16x^2\)
73 \(w^6 + 1\)
74 \(3x + 6\)
75 \(x^2 + 36\)
76 \(x^2 - 49y^2 - 14x + 49\)
77 \(x^5 - 4x^3 + 8x^2 - 32\)
78 \(4x^4 + 12x^3 + 20x^2\)

Exer. 79–90: Simplify the expression.
79 \(\frac{6x^2 - 7x - 5}{4x^2 + 4x + 1}\)
80 \(\frac{r^3 - t^3}{r^2 - t^2}\)
81 \(\frac{6x^2 - 5x - 6}{x^2 - 4} + \frac{2x^2 - 3x}{x + 2}\)
82 \(\frac{2}{4x - 5} - \frac{5}{10x + 1}\)
83 \(\frac{7}{x + 2} + \frac{3x}{(x + 2)^2} - \frac{5}{x}\)
84 \(\frac{x + x^2}{1 + x^2}\)
85 \(\frac{1}{x} - \frac{2}{x^2 + x} - \frac{3}{x + 3}\)
86 \(\frac{a^{2/3} + b^{-1}}{x + x^2}\)
87 \(\frac{x}{x + 4} + \frac{1}{x + 4}\)
88 \(\frac{x}{x + 2} - \frac{4}{x + 2}\)
\(\frac{x}{x - 3} - \frac{6}{x + 2}\)
93 Red blood cells in a body
The body of an average person contains 5.5 liters of blood and about 5 million red blood cells per cubic millimeter of blood. Given that 1 L = 10^6 mm³, estimate the number of red blood cells in an average person’s body.

CHAPTER 1 DISCUSSION EXERCISES

1 Credit card cash back
For every $10 charged to a particular credit card, 1 point is awarded. At the end of the year, 100 points can be exchanged for $1 in cash back. What percent discount does this cash back represent in terms of the amount of money charged to the credit card?

2 Determine the conditions under which \(\sqrt{a^2 + b^2} = a + b \).

3 Show that the sum of squares \(x^2 + 25 \) can be factored by adding and subtracting a particular term and following the method demonstrated in Example 10(c) of Section 1.3.

4 What is the difference between the expressions \(\frac{1}{x + 1} \) and \(\frac{x - 1}{x^2 - 1} \)?

5 Write the quotient of two arbitrary second-degree polynomials in \(x \), and evaluate the quotient with several large values of \(x \). What general conclusion can you reach about such quotients?

6 Add his/her height (in inches).
7 Add 115.

The first two digits of the result equal his/her age, and the last two digits equal his/her height. Explain why this is true.

8 Circuits problem
In a particular circuits problem, the output voltage is defined by

\[
V_{\text{out}} = I_m \left(\frac{R X_i}{R - X_i} \right),
\]

where \(I_m = \frac{V_{\text{in}}}{Z_{\text{in}}} \) and \(Z_{\text{in}} = \frac{R^2 - X^2 - 3RX_i}{R - X_i} \). Find a formula for \(V_{\text{out}} \) in terms of \(V_{\text{in}} \) when \(R \) is equal to \(X \).

9 Relating baseball records
Based on the number of runs scored (\(S \)) and runs allowed (\(A \)), the Pythagorean winning percentage estimates what a baseball team’s winning percentage should be. This formula, developed by baseball statistician Bill James, has the form

\[
\frac{S^*}{S^* + A^*}
\]

James determined that \(x = 1.83 \) yields the most accurate results.

The 1927 New York Yankees are generally regarded as one of the best teams in baseball history. Their record was 110 wins and 44 losses. They scored 975 runs while allowing only 599.

(a) Find their Pythagorean win–loss record.

(b) Estimate the value of \(x \) (to the nearest 0.01) that best predicts the 1927 Yankees’ actual win–loss record.