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Abstract: In this paper a discrete-time reserve process with a fixedeoas presented and modelled as a discounted
Markov Decision Process. The non-payment of dividends malieed. The minimization of this penalty
results in an optimal control problem. This work focuses etedmining the sequence of premiums that mini-
mize penalty costs, and obtaining a rate for the probalwfityiin to ensure a sustainable reserve operation.

1 INTRODUCTION ity when the timet increases indefinitely, (see (De-
Finetti, 1957)). Therefore, dividends appear as a way

This work is related to risk theory, which describes to control an unlimited increment of the reserves.
the behavior of the reserve process of an insurance Dividend policies aim to attract shareholders (or
company. The classic model was introduced by Filip investors), in order to address risks. One possi-
Lundberg in 1903 (Lundberg, 1909) and developed ble policy is to determine the dividend strategy that
by Harald Cramér in 1930 (Cramér, 1930). In this maximizes the discounted expected value of a utility
model, the premiums are obtained continuously at a function by means of control techniques. This ap-
constant rate and the total amount of claims over a proach has been studied in continuous time such as:
period of timet is given by a compound Poisson pro- (Azcue and Muler, 2014), (Dickson, 2005), (Dick-
cess. The main problem of the classical model was Son and Waters, 2004), (Gerber, 1981), (Gerber etal.,
to determine the ruin probability of the reserve pro- 2006), and (Schmidli, 2009). On the other hand,
cess. However, currently, several other interesting discrete-time problems of risk theory have been stud-
problems have been matter of study: minimization ied, for instance, in (Bulinskaya and Muromskaya,
of the ruin probability, the distribution of dividends 2014), (Diasparra and Romera, 2009), (Martinez-
to shareholders, the reinsurance problem, the collec-Morales, 1991), (Martin-Lof, 1994), (Schal, 2004),
tion of premiums dependent on the history of each and (Schmidli, 2009) who have applied the optimal
customer, analysis of the reserve process when claimscontrol theory in insurance companies. In particular,
have sub-exponential distributions, just to mention a in (Martin-L6f, 1994) the control techniques were in-
few (see (Azcue and Muler, 2014), (Dickson, 2005), troduced for the first time by means of the theory of
(Dickson and Waters, 2004), (Gerber, 1981), (Ger- discounted Markov Decision Processes.
ber et al., 2006), (Rolski et al., 1999), and (Schmidli, The discounted Markov Decision Processes
2009)). (MDPs) (see (Hernandez-Lerma and Lasserre, 1996))
In particular, the problem of interest for the au- at discrete time are those that are periodically ob-
thors of this article is the definition of policies for the served under uncertainty on transit of their states and
distribution of dividends in fixed periods of time when with the property that they can be influenced by ap-
the claims are of light or heavy tails. This issue is rel- plication of controls (Hernandez-Lerma and Lasserre,
evant because in the classical model, if the intensity of 1996). A Markov Decision Process (MDP) is gener-
the premiums is higher than the average total amountally described as follows: at a particular timethe
of claims (the security loading is positive), then with system is observed and, depending on its current state,
probability 1, the paths of the reserve tend to infin- a controlis applied; then a costis paid and, by a prede-



termined transition law, the system getsto anew state.2 PRELIMINARIES
The sequence of controls is called policy, and a way of

assessing their quality is through a performance crite- This section presents some results on the theory that
rion. The Optimal Control Problem (OCP) consists will be used to solve the problem stated in the paper.
in determining a policy which optimizes the perfor-

mance criterion. One way to solve the OCP isusing 2 1 Stochastic orders

the technique of dynamic programming introduced by

Bellman in the middle of the last century. LetX be a Borel space (i.e., a Borel subset of a separa-

From this perspective, the problem of dividends P!€ metric space) and suppose thas complete and
is modeled here by using discrete-time MDPs. It is Partially ordered. The partial order is denoted by
proposed to work within MDPs since similar con- = Morgov_erafunctlorg:x ._>R'S considered to be
trol problems of dams or inventories, sample stor- increasing ifx,y € X, x <y, imply thatg(x) < g(y),

age problems, have been resolved successfully, seé/"hereS IS the_ usual order iR. Besides, the Borel
(Finch, 1960) and (Ghosal, 1970). On the other hand, o-algebra oX is denoted bys (X).

discrete-time is used here as it was suggested in (LiDefinition 2.1. Let X be a complete Borel space and
et al., 2009). This type of analysis is important in it- suppose that X is partially ordered. Let P antide
self as it presents an approximation of the continuous probability measures ofX, 3 (X)). It is said that P
problem and as it is also more realistic from the ap- dominates P stochastically if [gdP < [gdP for all
plications point of view. One approach that will be g:X — R measurable, bounded and increasing, so
followed in this work is to study the problem of div- . st .

idends by fixing an objective capital, (barriet)> 0. write P < P when this holds.
If the reserve exceeds, then the dividends are dis- Remark 2.2. Let P and Pbe probability measures on
tributed. A model with a fixed barrier reserve of an (R,3(R)). In this case, Fsé P/ if F/(x) < F(x), for all
insurance company is proposed. The reserve procesg ¢ R, where F and Fare the distribution functions of

is modelled as an MDP whose admissible control be- p 51 P, respectively, (see (Lindvall, 1992) p. 127).
longs to a compact subset. The bounds of this sub-

set depend on two principles for premium calculation: Lemma 2.3. ((Cruz-Sirez etal., 2004), Lemma 2.6)
the expectation principle and the standard deviation Let X be a complete Borel space, and suppose also
principle (see (Dickson, 2005)). The distribution of that X is partially ordered. Let P and’Pe proba-

the total amount of claims, by time interval, repre- pjlity measures oiiX, 3 (X)), such that, F%t P Then
sents a compound process which is supposed to befH*dpg [H,dP, for H, : X — R which is measur-

g.eneral, in the.Sense that it Only requireS for its den- ab]e, nonnegaﬁve, nondecreasing, and (poss|b|y) un-
sity to be continuous almost everywhere. The pro- pounded.

posed performance criterion is the expected total dis-
counted cost, .where the cost p_enalizes both the faiI-2_2 Discounted Markov decision
ure to pay dividends and the difference between the
admissible premiums and a constant which depends processes
on the standard deviation principle to premium calcu-
lation. In addition, the dynamic programming tech- Let X andY be complete Borel spaces. stochas-
nique explicitly determines the optimal solutions, and tic kernel on X givenY is a functionP(-|-) such that
on the other hand, a rate for the ruin probability is P(:|y) is a probability measure oX for each fixed
established, which aims to determine long periods of Y € Y, andP(B|-) is a measurable function on for
sustainability of the company. each fixed € 3 (X).

Let (X,A,{A(X)|x € X},Q,c) be a discrete-time

The paper is organized as follows: in the sec- Markov Control Model (see (Bauerle and Rieder,

ond section the mathematical tools that will be used 2011) or (Hernandez-Lerma and Lasserre, 1996) for
throughout this work (mainly MDPs and stochastic notation and terminology). This model consists of the
orders) are presented. The reserve process with astate spac¥, the control sef, the transition lanQ,
fixed barrier is presented in the third section with an and the cost-per-stage For eachx € X, there is a
analysis of dividend policies. In the fourth and fifth nonempty measurable sa{x) C A whose elements
sections the main results are given: the optimal pre- are the feasible actions when the state of the system
mium and a rate for the ruin probability with a couple is x. DefineK := {(x,a) : x€ X,a€ A(X)} . cis as-
of examples where the theory obtained in this work is sumed to be a nonnegative and measurable function
applied. Finally, research conclusions are presented. onK.



The transition lawQ is often induced by an equa-
tion of the form

(1)
, With Xo € X given, where{x,} and{an}

Xnt1 = G(Xn, anvan)v
N=0,1-

are the sequences of the states and controls, respeds compact.

tively, and &} is a sequence of random variables in-
dependent and identically distributed (i.i.d.), with val-
ues in some spac® common density functio, and
independent of the initial state; G: K x S— Xisa
measurable function.

Assumption 2.4. (a) A(x) is compact for all x€ X;
(b) cis lower semicontinuous and nonnegative;
(c) The transition law Q is strongly continuous, that

is, the function h defined orK by:

xa /h

Q(dyix,a), (2)

is continuous and bounded for every measurable

bounded function h on X

Using the standard notation and definitions in
(Hernandez-Lerma and Lasserre, 1998)denotes
the set of all policies andf is the subset of station-
ary policies. Each stationary polidye F is identi-
fied with the measurable functidn: X — A such that
f(x) € A(x) for everyx € X.

Remark 2.5. Given an initial state ¢ X and a sta-
tionary policy fe IF, the process determined by (1) is

a homogeneous Markov process with transition kernel

Q(:|x, f) (see (Herdndez-Lerma and Lasserre, 1996)
Proposition 2.3.5 p. 19).

Let (X,A, {AX)|x € X},Q,c) be a discrete-time
Markov Control Model, in this paper the perfor-
mance criterion to consider is thHexpected Total
Discounted Costdefined as

+oo

Z)a”c(xn,an)],

n=

V(T X) := By (3)
when using the policyt € M, given the initial state
Xo =X € X. In this caseq € (0,1) is a given discount
factor, ancE] denotes the expectation with respect to
the probability measurBl induced byrt andx (see
(Hernandez-Lerma and Lasserre, 1996)).

A policy T is said to beoptimal if

V(T[*,X) :V*(X)v (4)
for eachx € X, where
V() i= inf v(TT) (5)

is the so-calle@ptimal value function.

Remark 2.6. Assumptions 2.4a) and 2.4b) imply that
c is inf-compact orK, that is, for every x X and
r € R, the set

Ar(x) :={acAX)lc(x.a) <r} (6)

Therefore, Assumption 2.4 implies As-
sumption 1a) and 1b) in (Heémdez-Lerma and
Lasserre, 1996). Consequently, the validity of the next
lemma is guaranteed.

Lemma 2.7. ((Herndndez-Lerma and Lasserre,
1996), Theorem 4.2.3 and Lemma 4.2.8) Under As-
sumption 2.4,

(&) The optimal value functionVsatisfies the opti-
mality equation

V*(x) = inf {cxa +0(/V

aeA

Q(dylxa)},
(7)

for each xe X.
(b) There exists an optimal stationary policy ¢ F

such that
)+ [V
for each xe X.
(€) Va(X) = V*(X) when n— o, where , is defined
by

V(%) = Q(dyix, f*(x))

(8)

Vin(X)

inf {cxa +G/Vn 1(y

acA(x

for each xe X, with \p(-) = 0.

3 RESERVE PROCESS

A Risk Process(see (Asmussen, 2010), (Dickson,
2005), and (Schmidli, 2009)) consists of a pair
(R,S),t > 0, which describes the premiums earned
and the total amount of claims during the period of
time [0,t], respectively.

The relationship betwedh and$ is given as fol-
lows:

t > 0, whereRy = u > 0 is the initial reserve of the
company. In this cas®&; represents the reserve of the
company at the timé The proces§R: }i>o is called
Reserve Process.

The ruin of the company is given at the inst&at
takes a negative value. The main objective then is to
determine the probability of this event, which is done
in the following definition.



Definition 3.1. The ruin probabilityp(u), with initial the claim size cumulative distribution function is of a
reserve u> 0, is defined by particular parametric form, eg., gamma, Weibull, etc.
(see Assumption 3.5 and examples 1 and 2, below).

W(u) := Prt(u) < 4o (11) .

) _ _ Dividends can be understood as payments made
wheret(u) := inf{t > O|R < 0} with T(u) = oo if by a company to its shareholders, either in cash or
R > Oforallt > 0. in shares. The arguments about the advantages of a

In the classical model of Lundberg and Crameér, dividend refer to the intention of the investors to earn
the premiums are determined continuously and de-income in the present and to reduce uncertainty. For-
terministically, i.e.,R = Ct whereC > 0 andt > 0. mally, the dividendsgk, are defined ag; = [R —Z| ",

In addition, the total amount of claim§ may de-  Where[Z" = max{0,z}.
pend on two process: a homogeneous Poisson process On the other hand, in the existing literature, differ-
{N(t) }+>0, with intensityA > 0, and a claims amounts ~ €nt methods are proposed to determine the premium

process(Y, :i =1,2,---}, whereY; are independent Vvalue for the safety loading condition to hold (see
and identically distributed random variables. Thus, (Dickson, 2005) and (Schmidli, 2009)). In this work
the total amount of claims until tinteis given by the expectation principle will be used.
N 3.1 Discrete-time reserve process
S = ZY (12) ' p
i=

Now, a discrete-time reserve model will be developed.

where§ =0ift =0. , , The discretization is reasonable because, in practice,
Thus, the classical reserve process is described bygeacisions of the company about its operations are

N(t) taken at fixed points of time (see (Bulinskaya and
R = u+Ct— ZYi, Muromskaya, 2014), (Diasparra and Romera, 2009),
i= (Li et al., 2009), and (Schmidli, 2009)).
— uiCt-§ Let {R} be a reserve process with initial reserve
o ) Ry = u> 0, and {t,} be an increasing sequence of
Observe that iE[S] denotes the expectation &f positive real numbers witly = 0. Then, equation (10)
andE[S] < +oo, then, taking the expectation in the implies that
last equation, it is obtained that Roi—Ro= (P, —R)— (S, — S, (14)
B[R] =u+(C-AEV)L. (13) forn=0,1,---, where(R,,, - R,) and(S,,, — S,)

ChoosingC > AE[Yy], it is concluded that the av- &€ the premiums earned and the total amount of
erage reserves of the company grow indefinitely. In claims during the periodn, tr,1], respectively.

other words, the reserv& tends to infinity whert Let x, := Ry, &, = (R, —R,) and &, =
does so with probability + y(u). The assumption (S —Ss)- Then, without loss of generality, it is
C > AE[Y1] is known as theSafety Loading Condi- ~ POssible assume thag = n for n > 0. Then, the
tion. discrete-time reserve model is as follows:

As mentioned above, in the classical model, the Xne1 = Xn =+ a@n— &n, (15)

safety loading condition allows an insurance company .

reserves to accumulate indefinitely, which is unrealis- with Xo =u- 0. .
tic. Although there seems to be a controversy about In this caseXn. represents t.he reserve at time
this point, it has been suggested to establish an up-'_[ =n+1. Moreover, the discrete-time ruin probability
per limit (barrier)Z for the accumulation or earnings > determine by

in order to sustain the risks (see (Azcue and Muler, Py (u) := Prltg(u) < +o] (16)
2014), (De-Finetti, 1957), (Dickson, 2005), (Dickson
and Waters, 2004), and (Schmidli, 2009)). To reach
this end, the reserves of the company must be reduce
to Z from time to time, for example, by paying divi-
dends to shareholders.

wheretg(u) :=inf{n > 1|x, < 0} with T4(u) = +oo if
J<n>0foralln>0.

According to the ruin probability defined above,
the ruin of the company is attained when+ a, —
&n <0 for somen > 0.

Remark 3.2. Itis important to mention that in a more If the following dynamics is considered:
general setting, some of the assumptions of the clas- .

sical model may be relaxed, efd\(t)} could be a X1 = Dot an—&nl", (17)
non-homogeneous Poisson process or a more generafor n = 1,2,---, with xg = u > 0, then dynamics

renewal process. Hence it is possible to assume thatin (17) determines the ruin whexy = 0 for some



n=12---. However, just as in the continuous case and
model, if the safety loading condition holdsx,| — M := (14 B)E[E], (20)

oo whenn — . where 0< & < B. Then, by ((Dickson, 2005) and

Remark 3.3. The dynamics described in (17) is (Schmidli, 2009))K < M, therefore, the admissible

known as the Lindley random walk (see (Asmussen,premiums set is the compact subgetM]. (Note that

2010)) which has various applications, for example, for all premiuma € A(x) = [K,M], the safety load-

in storage processes, waiting time model, queue sizeing condition is satisfied, ar@lis fixed in order to be

models, to name a few (Asmussen, 2010). (See Recompetitive in the insurance market.)

mark 3.4, below.) Every time that the reserve is below the bar#er
the non-payments of dividends is penalized. There-

3.2 Reserve process with a fixed barrier  fore, the following cost function is proposed:

This subsection provides a reserve process which is c(xa):=[Z2-¥", (21)

modelled as a discounted Markov Decision Processor eachx e [0, +) anda € [K, M].

at discrete time. The motivation is originated from ) ]

the previous subsection, that is, the possibility of dis- Reémark 3.7. This model defines an MDP: take=X

cretizing the reserve process, and the existence of al0; +) as the state space; A [K,M] as the action

fixed barrier which defines the payments of dividends SPace; Ax) = [K,M] as admissible actions for each

(see (Azcue and Muler, 2014), (De-Finetti, 1957), X € X; the transition law Q is induced by the function

(Dickson, 2005), and (Martinez-Morales, 1991)). G(x,a,s) := min{[x+a—g",Z} for each(x,a) € K
Let Z be a fixed barrier such that, if at tintg, and se [0,+) (see equation (1)). Finally, the cost

% > Z, the surplusX, — Z is used to pay dividends. functionis defined in (21).

Thus, the study of the reserve process focuses on the  According to Remark 3.7, there is a problem (an

reserves below barrigt. Mathematically, this is de-  OCP) to determine the sequence of premiums

scribed by the following dynamics: {an} which optimizes

X1 = Min{[%n+an— & ", Z} (18)

with xo =u > 0.

In this casex,, an and &, denotes respectively: ) o . )
reserve, premium and the total amount of claims of Wherex > 0 is the initial reserve, and is a given
the company at the beginning of the periogdn + 1]. discount factor.

Remark 3.4. The dynamics given in equation (18)

has been used to describe storage processes with finite

capacity such as: dams, inventory, waiting time model 4 OPTIMAL PREMIUMS

and queue sizes, to name a few (see (Finch, 1960) and

(Ghosal, 1970)). In this section the research results are presented using
MDPs theory.

By the definition of the cost function in (21) it
is concluded that it is nonnegative and continuous.
Moreover, for eaclk € X, A(x) = [K,M] is a compact
set. So, now it is only necessary to show Assumption
2.4c) which is presented in the following lemma.

+oo

V(TLX) 1= EY lzocx”[Z—xn]*} , (22)

Assumption 3.5. Suppose tha§é,} is a sequence of
i.i.d. random variables with values df, ), and a
common distribution F whose densiyis continu-
ous almost everywhere (a.e.), with§E< +oo (§ is a
generic element of the sequer{ég}).

In the rest of this paper Assumption 3.5 will not be . )
mentioned in each result, but it is supposed to hold. Lemma 4.1. The transition law Qinduced by (18),
is strongly continuous.

Remark 3.6. Observe that Assumption 3.5 considers

general distributions which, in practice, permits usto proof. Let h: X — R be a measurable function
work with distributions with light or heavy tails (see pounded by the constaptUsing the Variable Change
(Azcue and Muler, 2014)). Theorem ((Ash and Doléans-Dade, 2000) p. 52), it

Using the expectation principle for premiums cal- follows that
culation, it is ensured that the safety loading condition ® ) N
for the process described in equation (18) holds. De-/hW)Q(dYIXva):/O h(min{[x+a—s|",Z})A(s)ds
fine (23)
K:=(1+¢)E[¢] (19) (x,a) € K.



Furthermore,

/0 " h(min{[x+a—g*, Z})A(s)ds= (24)

h(0)(1-F(x+a)) (25)
+ h(Z)F(x+a-2) (26)
+ e h(x+a—s)A(s)ds (27)
x+a—Z

(x,a) € K, whereF is the common distribution func-
tion of €.

Since density\ is a continuous function a.e. (see
Assumption 3.5)F is also continuous (see (Ash and
Doléans-Dade, 2000), p. 175)

Given the above, it suffices to prove that

x+a
/ h(x+a—s)A(s)ds (28)
x+a—Z
is a continuous function ofx,a) € K.

For this purpose, lef(xx,ax)} be a sequence in
K converging to(x,a) € K. By the Variable Change
Theorem ((Ash and Doléans-Dade, 2000) p. 52),

X+a Z
/ h(X+a—s)A(s)ds:/ h(y)A(x+a—y)dy.
x+a—Z 0
(29)
Consider the following functions defined by
hi(y) h(Y)A(X%+ak—Y)loz(y), (30)

k() YA+ ak—Y)ljoz)(Y), (31)

fork=1,2,---,y € [0,+), wherelg(-) denotes the
indicator function on the sa&.

Note thathy| < g for all k> 1. Furthermore{gy}
converges a.e. to the functigrwhich is defined by

9(y) :==YAX+a—y)loz(y), (32)
y € [0,+).
Furthermore,
Z
/ k(y)dy = y/O A(xc+ ax —y)dy,

YPriXe+ax—Z < & <Xc+ay,

Y(F (% +a) — F (% + & — Z)),
and, as the distributioR is continuous, then

lim / Ok(y)dy= / g(y)dy.

Finally, by the Dominated Convergence Theorem
((Royden, 1988) p. 92)
X+

h(x«+ ax — s)A(s)ds
X+ag—2Z

(33)

lim
k—c0

lim
k—r00

/hk(Y)dy

lim h(y)dy

k—
Z

/0 h(y)A(x+a—y)dy
X+a

/ h(x+a—s)A(s)ds
x+a—Z

and therefore the result holds. O

By Lemma 4.1, Assumption 2.4 holds, and there-
fore Lemma 2.7 guarantees the existence of the opti-
mal policy, f* € F, which, in the context of the reserve
process, describes the sequence of optimum premi-
ums that minimizes the performance index given in
(22).

Lemma 4.2. a) The transition law Q induced by

(18), is stochastically ordered, i.e.,

st
Q([x,a) < Q(-/w,b) (34)
for each(x,a), (w,b) € K with x<w and a< b.
b) The optimal value function*{-), and the value

iteration functions ¥(-), defined in (9), are de-
creasing on X

Proof. a) Let(x,a),(w,b) € Kwithx<wanda<h.
Observe that

Xx+a—9g" <[w+b—gT, (35)

se€ [0, +o).
On the other hand, if mfjw+b—g*,Z2} = Z,
then min{[x+a—9",Z} <min{jw+b—9g*,Z},
and if min{fw+b—g*,Z} = [w+b—¢g*, by
(35) min{[x+a—9*,Z} <min{[w+b—g*,Z}.
Therefore

min{[x+a—9g*,Z} <min{w+b—g* Z},
(36)
s € [0,+w). Thus, by (36) if mi{[w+ b —
&]".Z} <¢, then mif[x+a—§&]",Z} <¢, and
therefore

Q(min{[w+b—&]",Z} < wb) <
Q(min{[x+a—¢&]",Z} < ¢/x,a).

Finally, by Remark 2.2, the result holds.

First it will be shown thaV, is decreasing oiX.
The proof is made by mathematical induction.
Let x,w € X with x < w. By definition ofV,, for
n=1,

37)

b)

Vi = inf (24"} (39



this implies thaw/1(x) = [Z —
decreasing oiX.
Now, forn= 2,

X|*, thereforev; is

Vo(x) = inf {c

acA(x) (X’ a>
+ a/vl(min{[x+ a—s*,z})A(9ds)

= inf {c
aeA(x){

(x,a)
+ 0(/[2— min{[x+a—§*,Z}]*A(s)ds}

= f
LS

+ a /(z —min{[x+a—9g",Z})A(5)ds}

= inf {[Z

X" +az
aeA

- a/min{[x+afs]+,Z}A(s)ds}

= inf {[Z-

X" +az
acA(x)

a [yQdyx.a)}.

Hence, by part (a) of this lemma and using
Lemma 2.3 withH,(y) =y, y € X, the function
Os, defined by

0.(a) = —a [yQayxa),  (39)
a € [K,M] is decreasing, and so its minimum is
M. This implies that

Vo(X) = [Z— X" +0aZ— O(/yQ(dy|x, a). (40)

Sincex < w and after some calculations, it is ob-
tained thatvo(w) < Vo(x). As x andw are arbi-
trary, thenV, is a decreasing function oX. Sup-
pose thaw, is decreasing oX for somen > 2.
Again, takex,w € X with x < w. Then

Vht1(X) = inf {c(x a)

acA(X

(41)

+ o« /Vn(min{[x+ a—g*,Z})A(s)ds)

= inf {[Z—-x"
2 =x

+ /vn

Q(dyjx,a)}.

Let a € [K,M]. By induction hypothesis and by
the stochastic order @, it yields that

[Z—w] +or/vn Q(dylw,a)

<[Z-X] +0(/Vn Q(dyix,a),
then taking minimum o € [K,M] on both sides
of the inequality, it is obtained that, 1(w) <
Vnt1(X). Therefore, Vhy1 is decreasing. By
Lemma 2.7¢)Va(X) — V*(x), x € X, which im-
plies thatv* is a decreasing function of.

|

Theorem 4.3. The optimal policy for the reserve pro-
cess with dividends, induced by (18), ig-j =M

Proof. Letx € X be fixed. By Lemma 2.%/* satisfies
the optimality equation (7), that is,

V¥(x) = inf {[Z x|t

aeA

©afvy
Also, by Lemma 4.2,V* is decreasing and) is

stochastically ordered. Then, &b € [K,M], with
a< b, itis obtained that

a [V ()Qeyixb) <

Q(dyjx,a)}.

a [V (y)Qldyx.a). “2)
Adding[Z —x]* on both sides of the inequality above,
it is concluded that, foa € [K,M],

H(@) = [Z—X +0(/V Qdyxa)  (43)
is a decreasing function and its minimum is reached
in M. Sincex is arbitrary, the result follows. O

Finally, in this section, by Theorem 4.3 it is ob-
tained that the optimal value function is of the form

V*(x) = v(M,x) = EM [ia“

for eachx € X. That is, the expected total discounted
cost of the penalties for not reaching the barzieand
therefore not paying the dividends to shareholders is
brought to present value, given the discount factor

[Z— xn]+1 ,  (44)



5 RATES FOR RUIN
PROBABILITY

This section presents a rate for ruin probability which
permits to determine a period of sustainability for

the company under the optimum reserve process, that

is, the process under the optimal policy (premium)

f() =M,
X1 =min{[Xy' +M—&]",Z},  (45)
with X =u > 0.
To this end,
Wy (u) == Prg =uxt! #0,--- 1 # 0, = 0]
(46)

is defined foru > 0 andN > 2.

Observe thatp (u) is the ruin probability when
14(u) = N, wherety is the stopping time for the state
zero (see equation (16)).

Theorem 5.1. Let {xM} be the optimal reserve pro-
cess generated for the optimal policy £ M, with
X =u>0and N> 2. Then

W (u) < (Prig < Z+M)N2.Prig <u+M]. (47)
Proof. The optimal proces$xM} is a homogeneous
Markov process with transition la¥) (see Remark
2.5).

Consider the following set8p = {x}' = u}, By =
{xM =0} andBj = {(xM £0},fori=1,2,--- N—1,
and observe thd&®; € 3 (X) fori=1,2,--- /N.

Then, by Proposition 7.3 p. 130 in (Breiman,
1992),

Yl (u) =

Pr[xgl = u7xg/| 7é 07 7X'\N/I71 7é 07X'\N/I = 0]

/BN,l"'/BO Q(Bn|wn-1,M)

Q(dwWn_1|Wn_2,M)---
Q(dwa |wo, M)p(dw),

where the initial distributiorp is the Dirac measure
concentred om.
On the other hand, observe that

Q(Bn|wn-1,M) < 1.

(48)
Therefore
Wy (u)

/BM . ../BO Q(dvie_1wh_2, M)

Q(dw|wo, M)p(dwp).
furthermore, foreach=1,2,--- N—1,B; C{§_1<
XM, +M} C {& < Z+ M}; this implies that

Q(Bi|wi_1,M) < Pr[&i_1 <xM, +M] <Pr[§ <Z+M].
(49)

So

IN

Wy (u)
/ o PrE<Z+M]
Bn-2 Bo
Q(dwWN_2|Wn-3,M)---
Q(dwi [wo, M)p(dwp).

Finally, iterating this wayN — 3 times and sincg
is concentrated iBy, it is obtained that

Wi (u) < (Prig < Z+M))"?Q(B1|u,M),  (50)

whereQ(By|u,M) = Q(x) # 0ju,M) = Pr[§ < u+
M]. O

The examples that follow illustrate the applica-
tion of Theorem 5.1. To do this, the ruin probability
Wl (u) = 0.001 andv := 1— Y} (u) are considered.

Table 1 Gamma distribution

u| k=1 | years&N) K=3 yearsgs N)
1| Z=4.503 19.07 7=6.928 18.70
2 M=2 19.11 M=4.732 18.99
3 19.12 19.08
4 19.17 19.09

5.1 Example 1

Suppose thak has a Gamma distribution with param-
eters(A, k) whose density is of the form
A s

= — () e N s> 0,

> (51)

whererl (k) = [, s 1e~Sdsis the Gamma function.

It is known that the Gamma distribution is not an-
alytically integrable, so it is necessary to resort to ta-
bles for this distribution given in (Wilks, 2011) Ap-
pendix B Table B.2.

In this case, the optimal premium is

M =k +Bvk,

wheref is the loading factor.

GivenA = 3 =1, and different values afi, Z, M,
and their respective period of sustainability (in years)
are calculated fok = 1,3. These values are shown in
Table (2).

(52)

5.2 Example 2

Suppose that has a Weibull distribution with param-
eters(A,K). It is known that the distribution function
is as follows:

F(s)=1—e &N s>0. (53)
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