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Introduction

The ruin probability of the reserve of an insurance company, in finite and infinite horizon, when
there is the possibility to invest in a risky asset, has recently received a lot of attention. It is well
known that for the classical Cramér-Lundberg process (where there is no investment and the claims
have exponential moments), the ruin probability decreases exponentially with respect to the initial
wealth.
Hipp and Plum in 2000, see [HP00], assuming that the price of stock is modeled by the Geometric
Brownian Motion, determined the strategy of investment which minimizes the ruin probability using
the Hamilton-Jacobi-Bellman equation. In 2003, Gaier, Grandits and Schachermayer, see [GGS03],
under the same hypotheses as Hipp and Plum, obtained an exponential bound with a rate that
improves the classical Lundberg parameter. The optimal trading strategy they found consists in
investing in the stock a constant amount of money, independent of the current level of the reserve.
Hipp and Schmidli [HS04] showed that this strategy is asymptotically optimal.
In this paper we study the problem from a different point of view. We follow the approach done
by Ferguson, (1965) who conjectured that maximizing exponential utility from terminal wealth
is intrinsically related to minimizing the probability of ruin. Ferguson studied this problem for
a discrete time and discrete space investor. Browne (1995), verified the conjecture in a model
without interest rate, where the stock follows a Geometric Brownian Motion, and the Risk Process
is a Brownian Motion with drift, see [Fer65], [Bro95], and references therein. We consider the
wealth process of the reserve of an insurance company, with claims with exponential moments,
when there is investment in a bond and in a stock that follows a Geometric Brownian Motion
(see the formulation of the problem in Section 1). We first determine the optimal strategy that
maximizes an exponential utility function (− exp−γx) of the wealth process for a finite horizon
of time (T ). Then we ask ourselves what the ruin probability is, for this strategy, in the interval
[0, T ]. We obtain an exponential bound for the ruin probability that, when applied to the Classical
Cramér Risk Process, improves the classical Lundberg parameter for some values of γ. If we take
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the particular value γ = r̂, with r̂ as in [GGS03] –their modified Lundberg parameter– and no
bond, our strategy is the same to the one obtained by Gaier, Grandits and Schachermayer, and
Hipp and Schmidli. Hence, we can conclude that there is a deep relationship between maximizing
the exponential utility function and minimizing the probability of ruin.
The organization of this paper is as follows: the first Section is devoted to describe the problem. In
Section 2 we have the verification theorem for the optimal problem, Theorem 2.1. In Section 3 we
give a closed solution for an exponential utility function and find, explicitly, the optimal strategy
in Theorem 3.1. In Section 4 we estimate a bound for the ruin probability in Proposition 4.1 and
show our results include those of other authors (see, in particular, Remark 4.4). Finally, in the last
Section, we discuss numerical results.

1. Formulation of the Problem

In this section we formulate an optimal investment problem for an insurance company which is
allowed to invest in the securities market. Let (Ω,F , P ) be the underlying probability space, where
a Brownian motion Bt, a Poisson process Nt with constant intensity λ, and a sequence of indepen-
dent nonnegative random variables Yi with identical distribution ν are defined. It is assumed that
(Bt)t≥0, (Nt)t≥0 and (Yi)i≥1 are independent, and for each t > 0 the filtration Ft containing the
information up to time t is defined by

Ft = σ{Bs, Ns, Yj11[j≤Ns], s ≤ t, j ≥ 1}.

The market where the insurer can invest is composed by a bank account S0 and a risky asset St,
whose dynamics satisfy

S0
t = S0

0eηt, S0
0 = 1,

dSt = St(adt + σdBt), S0 = x,

where η, a, and σ are constants.
On the other hand the risk process is the classical Lundberg model, using a compound Poisson
process for the claims. Given the initial surplus z and the premium rate c > 0, the risk process

Rt = z + ct−
Nt∑
i=1

Yi,

where Yi represents the claim amounts.
We are interested in the finite horizon problem. Then, at each time t ∈ [0, T ], with T > 0 fixed, the
insurer divides his wealth Xt between the risky and the riskless assets and, if a claim is received at
that time, it is paid immediately. Let πt be the amount of wealth invested in the risky asset at time
t, which takes values in IR, while the rest of his wealth Xt − πt is invested in the bank account.
Then, if at time s < T the surplus of the company is x, the wealth process satisfies the dynamics

Xs,x,π
t = x + c(t− s)−

Nt∑
j=Ns+1

Yj +
∫ t

s
(a− η)πrdr

+
∫ t

s
ηXs,x,π

r dr +
∫ t

s
σπrdBr, (1.1)

with the convention that
∑0

j=1 = 0. When s = 0, we write Xπ
t .
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Definition 1.1. We say that π = {πt} is an admissible strategy if it is a Ft-progressively measurable
process such that

P[|πt| ≤ A, 0 ≤ t ≤ T ] = 1.

Note that the constant A may depend of the strategy, and the equation (1.1) has a unique solution.
We denote the set of admissible strategies as A.

A utility function U : IR → IR is defined as a twice continuously differentiable function, with
the property that U(·) is strictly increasing and strictly concave. We consider the optimization
problem consisting on maximizing the expected utility of the terminal wealth at time T, i.e. we are
interested in the following value function:

W (s, x) = sup
π∈A

E[U(Xs,x,π
T )]. (1.2)

We say that an admissible strategy π∗ is optimal if W (s, x) = E[U(Xs,x,π∗

T )].
The main results of this paper can be summarized as follows: when the risk preferences of the
insurer are exponential, the optimal investment problem described above can be solved explicitly
and, for the optimal investment strategy, it is possible to obtain an estimate of the associated ruin
probability.

2. Verification Theorem

In order to find a solution to the optimal investment problem formulated in (1.2) we will use
dynamic programming techniques. See, for instance, [FS93] for a general background in the theory
of optimal stochastic control. The Hamilton-Jacobi-Bellman (HJB) equation associated with the
optimal stochastic control problem is given by

0 =
∂V

∂t
(t, x) + max

π̃∈IR

{
σ2

2
π̃2 ∂2V

∂x2
(t, x) + (π̃(a− η) + ηx)

∂V

∂x
(t, x)

}

+c
∂V

∂x
(t, x) + λ

∫
IR

[V (t, x− y)− V (t, x)]ν(dy), (2.3)

with terminal condition V (T, x) = U(x). Next we establish a verification theorem, which relates
the solution of the HJB equation (when it exists) and the value function (1.2).

Theorem 2.1. Assume that there exists a classical solution V (t, x) ∈ C1,2([0, T ]× IR) to the HJB
equation (2.3) with boundary condition V (T, x) = U(x). Assume also that for each π ∈ A∫ T

0

∫
IR

E|V (s,Xπ
s− − y)− V (s,Xπ

s−)|2ν(dy)ds < ∞ (2.4)

and ∫ T

0
E[πs−

∂V

∂x
(s,Xπ

s−)]2ds < ∞. (2.5)

Then, for each s ∈ [0, T ], x ∈ IR,
V (s, x) ≥ W (s, x).

If, in addition, there exists a bounded measurable function π∗ : [0, T ]× IR → IR such that

π∗(t, x) ∈ argmaxπ∈IR

{
σ2

2
π2 ∂2V

∂x2
(t, x) + (π(a− η) + ηx)

∂V

∂x
(t, x)

}
,
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then π∗t = π∗(t, Xπ∗

t− ) defines an optimal investment strategy in feedback form if (1.1) admits a
unique solution Xπ∗

t and
V (s, x) = W (s, x) = EU [Xs,x,π∗

T ].

In order to prove this theorem we need the following lemma. Its proof can be adapted from
[LL96, Lemma 7.2.2] and will be omitted.

Lemma 2.1. Let φ(t, x, y) : IR+×IR×IR → IR be a measurable function such that, for each y ∈ IR,
the function (t, x) → φ(t, x, y) is continuous and let Xπ

t , t ≥ 0 be the left continuous process defined
in (1.1) for an admissible strategy π. Assume that for every t ∈ [0, T ]

E

(∫ t

0
ds

∫
IR

φ2(s,Xπ
s , y)ν(dy)

)
< ∞.

Then the process Mt defined by

Mt =
Nt∑
i=1

φ(τj , X
π
τj

, Yj)− λ

∫ t

0
ds

∫
IR

φ(s,Xπ
s , y)ν(dy),

where τn = inf{t ≥ 0, Nt = n}, is a square integrable martingale and

M2
t − λ

∫ t

0
ds

∫
IR

φ2(s,Xπ
s , y)ν(dy),

is a martingale.

Proof of Theorem 2.1. Given π ∈ A, 0 ≤ s < T and x ∈ IR, Ito’s formula implies that, for any
r ∈ [s, T ),

V (r, Xs,x,π
r ) = V (s, x) +

∫ r

s

∂V

∂t
(t, Xs,x,π

t− )dt

+
∫ r

s

∂V

∂x
(t, Xs,x,π

t− ){c + (a− η)πt− + ηXs,x,π
t− }dt

+
σ2

2

∫ r

s

∂2V

∂x2
(t, Xs,x,π

t− )π2
t−ds

+
∑

s≤t≤r

[V (t, Xs,x,π
t )− V (t, Xs,x,π

t− )] +
∫ r

s

∂V

∂x
(t, Xs,x,π

t− )σπt−dBt

= V (s, x) +
∫ r

s

∂V

∂t
(t, Xs,x,π

t− )dt

+
∫ r

s

∂V

∂x
(t, Xs,x,π

t− ){c + ηXs,x,π
t− + (a− η)πt−}dt

+
σ2

2

∫ r

s

∂2V

∂x2
(t, Xs,x,π

t− )π2
t−dt

+λ

∫ r

s

∫
IR+

[V (t, Xs,x,π
t− − y)− V (t, Xs,x,π

t− )]ν(dy)

+

 ∑
s≤t≤r

[V (t, Xs,x,π
t )− V (t, Xs,x,π

t− )]− λ

∫ r

s

∫
IR+

[V (t, Xs,x,π
t− − y)− V (t, Xs,x,π

t− )]ν(dy)


+

∫ r

s

∂V

∂x
(t, Xs,x,π

t− )σπt−dBt. (2.6)
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The last term is a martingale because it is an stochastic integral with respect to Brownian motion
and, defining

φ(t, x, y) := V (t, x− y)− V (t, x), (2.7)

the stopping times as τj , we have that

Nr∑
i=Ns+1

φ(τj , X
s,x,π

τ−j
, Yj) =

∑
s≤t≤r

(V (t, Xs,x,π
t )− V (t, Xs,x,π

t− )).

From the previous lemma, the term∑
t≤r

[V (t, Xπ
t )− V (t, Xπ

t−)]− λ

∫ r

0

∫
IR+

[V (t, Xπ
t− − y)− V (t, Xπ

t−)]ν(dy)dt


is a martingale. Now, using the fact that V solves the HJB equation (2.3), and taking expectations
in both sides of (2.6), it follows that

EV (r, Xs,x,π
r ) = V (s, x) + E

∫ r

s
AπV (t, Xs,x,π

t )dt

≤ V (s, x) + E
∫ r

s
sup
π∈IR

AπV (t, Xπ
t )dt (2.8)

= V (s, x),

where Aπ is the operator

Aπ(V (t, x)) =
∂V

∂x
(t, x)(c + πt(a− η) + ηx)

+
σ2

2
π2

t

∂2V

∂x2
(t, x) + λ

∫
R
[V (t, x− y)− V (t, x)]ν(dy). (2.9)

Letting r = T , we get
W (s, x) ≤ V (s, x).

To prove the second part, note that from hypothesis we know that π∗(t, x) is measurable and,
together with the assumption that Xπ∗

t is the unique solution of (1.1), imply that π∗(t, Xπ∗
t ) is an

admissible feedback control. Repeating the above calculations with πt = π∗(t, Xπ∗), it follows that
inequality in (2.8) becomes equality. Hence,

V (s, x) = E[U(Xs,x,π∗

T )] ≤ W (s, x),

and together with the first part implies that

V (s, x) = W (s, x).

When s = T the theorem follows directly from the terminal condition V (T, x) = U(T, x).

Remark 2.1. In the next section a closed form solution to the HJB equation (2.3) will be find
when the insurer has exponential risk preferences. Also, an estimate for the ruin probability when
the optimal investment strategy is followed will be obtained.
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3. Explicit solutions for exponential utility function

In this section we will obtain an explicit solution to the HJB equation (2.3) when the utility function
is of exponential type, i.e.

U(x) = −e−γx.

Also, using the verification theorem proved in the previous section, an explicit optimal strategy π∗

will be found.
In view of the form of the utility function and the dynamics of the wealth process Xπ

t , we propose
as solution to the HJB equation the function

W (t, x) = −Kt exp {−γxeη(T−t)}, (3.10)

for some function Kt which will be defined below.
From the definition of W (t, x) we have that

∂W

∂t
= {−K ′

t −Kt[γxηeη(T−t)]} exp {−γxeη(T−t)}, (3.11)

∂W

∂x
= K(t) exp {−γxeη(T−t)}γeη(T−t), (3.12)

∂2W

∂x2
= −Ktγ

2e2η(T−t) exp{−γxeη(T−t)} (3.13)

and

λ

∫
R
[W (x− y)−W (x)]ν(dy)

= −Ktλ exp {−γxeη(T−t)}
[∫

IR
[exp {γyeη(T−t)} − 1]ν(dy)

]
. (3.14)

Substituting expressions (3.11), (3.12), (3.13) and (3.14) in (2.3), we obtain

−K ′
t −Ktγxηeη(T−t) + Kt(c + ηx)γeη(T−t)

+max
π

{
−1

2
σ2π2Ktγ

2e2η(T−t) + Ktγ(a− η)πeη(T−t)
}

−λKt

∫
IR

[exp{γyeη(T−t)} − 1]ν(dy)

= −K ′
t + Ktcγeη(T−t)

+max
π

{
Kte

η(T−t)[−1
2
σ2π2γ2eη(T−t) + γ(a− η)π]

}
−λKt

∫
IR

[exp{γyeη(T−t)} − 1]ν(dy),

(3.15)

and the maximum in the last expression is attained at

π∗(t, x) =
a− η

γσ2
e−η(T−t).
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Substituting π∗ in (3.15), we obtain the following first order differential equation for K(t):

K ′(t)−Kt

[
1
2

(a− η)2

σ2
− λβt + cγeη(T−t)

]
= 0, (3.16)

where
βt :=

∫
IR

[exp{γyeη(T−t)} − 1]ν(dy).

In view of (3.10), the terminal condition W (T, x) = −e−γx will be satisfied when KT = 1. Hence,
the solution of the ODE (3.16) is given by

Kt = exp {−1
2

(a− η)2

σ2
(T − t) +

cγ

η
[1− eη(T−t)] + λ

∫ T

t
βsds}.

Remark 3.1. When the interest rate η is zero, βt is independent of t. In this case its constant
value is denoted by β.

Theorem 3.1. Assume that ∫
IR

exp{2γyeηT }ν(dy) < ∞.

Then, the value function defined in (1.2) has the form

W (t, x) = − exp

{
−1

2
(a− η)2

σ2
(T − t) +

cγ

η
[1− eη(T−t)] + λ

∫ T

t
βsds

}
· exp {−γxeη(T−t)}, (3.17)

and
π∗(t, x) =

a− η

γσ2
e−η(T−t)

is an optimal strategy.
In particular, when η = 0 we have that

W (t, x) = − exp
{
−1

2
a

σ2
(T − t) + cγ(T − t) + λβ(T − t)

}
e−γx (3.18)

and
π∗(t, x) =

a

γσ2
.

Proof. We have checked already that the function W (t, x) defined in (3.10) solves the HJB
equation (2.3). Now, we would like to apply Theorem 2.1 and, in order to do that, we shall verify
first that the assumptions of such theorem are satisfied. Let π ∈ A be an admissible strategy. Next
we get an estimate which yields the first condition (2.4) when η = 0. Observe that substituting the
definitions of W (t, x) and Xπ

t we get

E
∫

IR
|W (t, Xπ

t− − y) − W (t, Xπ
t−)|2ν(dy) = K2

t E exp{−2γXπ
t−}

∫
IR

[eγy − 1]2ν(dy)

= K2
t

∫
IR

[eγy − 1]2ν(dy)E exp{−2γXπ
t−} (3.19)

= K2
t

∫
IR

[eγy − 1]2ν(dy)e−2γ(x+ct) ·

E exp{−2γa

∫ t

0
πrdr − 2γσ

∫ t

0
πrdBr + 2γ

Nt−∑
j=1

Yj}

(3.20)
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Now, define the following equivalent measure Q on FT , with Radon-Nikodym derivative

dQ

dP
= exp{−γσ

∫ T

0
πrdBr −

1
2
γ2σ2

∫ T

0
π2

rdr}.

Notice that Novikov’s condition is satisfied in view of that strategy π is bounded (by constant
A), according with the definition of admissible strategies. Then, from the independence of Nt and
Yj , j = 1, 2, . . ., and using the form of the moment generating function,

E exp{−2γa

∫ t

0
πrdr − 2γσ

∫ t

0
πrdBr + 2γ

Nt−∑
j=1

Yj} = EQ exp{
∫ t

0
[−2γaπr + 2γ2σ2π2

r ]dr + 2γ

Nt−∑
j=1

Yj}

≤ e[2γ|a|A+2γ2σ2A2]TEQ exp{2γ

Nt−∑
j=1

Yj}

= e[2γ|a|A+2γ2σ2A2]T exp{λt[
∫

IR
e2γyν(dy)− 1]}

< ∞.

In order to prove the second condition (2.5), notice that

E[πtWx(t, Xπ
t−)]2 ≤ A2γ2Ee

−2γXπ
t− . (3.21)

Then, using the same arguments given after (3.19), it follows that the right hand side of (3.21) is
finite. Now, once we have verified the hypotheses of Theorem 2.1, it can be applied to derive the
results of the theorem.
When the interest rate η is non-zero, we apply the following argument. Given Xπ

t the unique
solution of (1.1), set

X̃π
t := eη(T−t)Xπ

t , c̃t := eη(T−t)c, ν̃(dy × dt) := eη(T−t)ν(dy × dt), S̃t = eη(T−t)St,

where ν(dy × dt) is the random Poisson measure associated with the Poisson process Nt and the
distribution ν(dy) of the random variables Yj . Then, X̃π

t solves the equation

X̃π
t = x +

∫ t

0
[(a− η)πr + c̃r]dr +

∫ t

0
σπrdBr −

∫ t

0

∫
IR

yν̃(dy × dr),

which corresponds to the case when the interest rate is zero, with drift a − η. Hence, the results
can be derived from the first part of the proof.

4. Ruin Probability

In this section we shall estimate the ruin probability when the insurer follows the optimal strategy
obtained in the previous section, and we show our results include those on cf [GGS03].

Recall that the wealth process associated with the optimal investment strategy π∗ is given by

X∗
t = z + ct−

Nt∑
i=1

Yj +
∫ t

0

(a− η)2

γσ2
e−η(T−r)dr

+
∫ t

0
ηX∗

r dr +
∫ t

0

(a− η)
γσ

e−η(T−r)dBr, for η ≥ 0. (4.22)
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On the other hand, it is clear that

P [X∗
s ≤ 0, for some s ∈ [0, t]] = P [ sup

s∈[0,t]
−X∗

s ≥ 0]. (4.23)

The upper bound for the ruin probability will be proved with the aid of the following result, which
is Lemma 3.1 in [DFM05]:

Lemma 4.1. Let Rt, t ≥ 0 be the process defined by:

Rt = r +
∫ t

0
αsdBs +

∫ t

0
bsds +

Nt∑
i=1

Y ′
i , t ≥ 0. (4.24)

Assume that
(i) The law of the random variables Y ′

i , i ≥ 1 admits a Laplace transform L(r) for 0 < r < K ≤ ∞.
(ii) There exists 0 < δ < K and a constant Mt(δ) ≥ 0 such that for all s ∈ [0, t],

δ

∫ s

0
budu +

δ2

2

∫ s

0
α2

udu + λs(L(δ)− 1) ≤ Mt(δ), a.e. (4.25)

Then, for each δ > 0, such that Mt(δ) ≥ 0 we have

P [sup
s≤t

Rs ≥ 0] ≤ e−δz+Mt(δ). (4.26)

Now we state our bound for the Ruin Probabilities.

Proposition 4.1. Assume that

1. The law of the random variables Yi, i ≥ 1 admits a Laplace transform L(r) for 0 < r < K ≤
∞, if K < ∞, limr→K L(r) = ∞ and that the following safety loading condition is satisfied

(c +
(a− η)2

γσ2
)e−ηT − λθ > 0, if η ≥ 0, (4.27)

where E[Y1] = θ. Then, the ruin probability satisfies

P [sup
s≤t

−X∗
s ≥ 0] ≤ e−δ∗z,

where δ∗ is the positive root of the equation:

hη(δ) = −δ(c +
(a− η)2

γσ2
)e−ηT +

δ2

2
(a− η)2

γ2σ2
e−2ηT + λ(L(δ)− 1) = 0. (4.28)

2. In addition, if η = 0, and δ1

2 < γ < 1
θ , where δ1 is the root of the equation

h1(δ) = −δc + λ(L(δ)− 1) = 0, (4.29)

then
δ1 < δ∗. (4.30)
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Proof.

1. It is clear that for η > 0, we can not apply Lemma 4.1 to the process −X∗
t , t ≥ 0. We will use

two auxiliary processes Zt, Z1
t , t ≥ 0 defined by:

Zt = X∗
t e−ηt, (4.31)

Z1
t = z + (c +

(a− η)2

γσ2
)e−ηT t−

Nt∑
i=1

Yi +
∫ t

0

a− η

γσ
exp−ηT dBs. (4.32)

By the integration by parts formula we have

Zt = z +
∫ t

0
e−ηrcdr −

Nt∑
j=1

e−ητjYj +
∫ t

0
e−ηr (a− η)2

γσ2
e−η(T−r)dr +

∫ t

0
ηe−ηrX∗

r dr

+
∫ t

0
e−ηr a− η

γσ
e−η(T−r)dBr −

∫ t

0
ηe−ηrX∗

r dr

= z +
∫ t

0
e−ηrcdr −

Nt∑
j=1

e−ητjYj +
∫ t

0

(a− η)2

γσ2
e−ηT dr +

∫ t

0

a− η

γσ
e−ηT dBr. (4.33)

It follows that
−Zt ≤ −Z1

t , t ≥ 0

and since
Xt ≤ 0 if and only if Zt ≤ 0,

then
P [ sup

0≤s≤t
−Xs ≥ 0] = P [ sup

0≤s≤t
−Zs ≥ 0] ≤ P [ sup

0≤s≤t
−Z1

s ≥ 0].

For each δ ≥ 0 let Mt(δ) = thη(δ). Note that

lim
δ→K

hη(δ) = ∞,

since if K < ∞ by hypothesis limδ→K L(δ) = ∞, and if K = ∞, we have a positive quadratic
term. Then, there exists δ > 0 such that Mt(δ) ≥ 0. Then, applying Lemma 4.1 to the process
−Z1

t , we obtain
P [ sup

0≤s≤t
−Xs ≥ 0] ≤ P [ sup

0≤s≤t
−Z1

s ≥ 0] ≤ e−δz+Mt(δ).

The existence of a positive root follows from the continuity of hη(δ) and the fact that hη(δ) < 0
in a neighborhood of 0 since for δ > 0,

hη(δ)
δ

= −(c +
(a− η)2

γσ2
)e−ηT +

δ

2
(a− η)2

γ2σ2
e−2ηT +

λ(L(δ)− 1)
δ

.

and from the safety loading hypothesis (4.27) we have:

lim
δ→0

hη(δ)
δ

= −(c +
(a− η)2

γσ2
)e−ηT + λθ < 0.

Then, there exists δ∗ > 0 (the root of equation (4.28)) such that

P [ sup
0≤s≤T

−X∗
s ] ≤ e−δ∗z.

If η = 0, we can apply directly Lemma 4.1 to the process X∗
t .
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2. Finally, to prove the second part of the Proposition we only need to verify that δ1 < δ∗.
Note that substituting δ1 in equation (4.28) for η = 0, we obtain:

h0(δ1) = −δ1 a2

γσ2
+

δ1

2
a2

γ2σ2
.

Observing that h0(δ1) < 0 if and only if δ∗

2 < γ, the result follows.

Remark 4.1. Equation (4.29) corresponds to a Cramér Lundberg Process without investment, so
δ1 is the Classical Lundberg parameter, and (4.30) says we can have a better exponential rate.

Remark 4.2. The case η = 0 is simpler than η > 0, but it is important in view of (4.30). Here,

X∗
t = z + ct−

Nt∑
i=1

Yi +
∫ t

0

a2

γσ2
dr +

∫ t

0

a

γσ
dBr, (4.34)

the safety loading condition becomes

c +
a2

γσ2
− λθ > 0, if η = 0, (4.35)

and

h0(δ) = −δ{c +
a2

γσ2
}+

δ2

2
a2

γ2σ2
+ λ(L(δ)− 1) = 0. (4.36)

Remark 4.3. For each γ > 0, let δ(γ) the root of h0(δ) as in (4.28). If we let M(γ) = a
γσ , then

we have

0 = h0(δ(γ)) = h0(δ(γ),M(γ)) = −δ(γ)
(

c +
M(γ)a

σ

)
+

δ(γ)2

2
M(γ)2 + λ[L(δ(γ))− 1].

Using the implicit function theorem, it can be shown that δ(γ) is maximum when δ(γ) = γ.

Remark 4.4. In the particular case we chose δ(γ) = γ, then δ(γ) satisfies equation (14) in Gaier,
Grandits and Schachermayer [GGS03], which means that for this case, our δ equals their r̂.

Proposition 4.2. Assume that the random variables Yi, i ≥ 1 are exponentially distributed with
mean θ and

0 < γ <
e−ηT

θ
. (4.37)

Then

W (t, x) = − exp
{
−1

2
a− η

σ2
(T − t) +

cγ

η
[1− eη(T−t)]− λ

η
log

(
1− γθ

1− γθeη(T−t)

)}
· exp {−γxeη(T−t)}.

In particular, if η = 0, and

0 < γ <
1
θ
,

then

W (t, x) = − exp
{
−1

2
a

σ2
(T − t) + cγ(T − t)− λ

γθ

1− γθ
(T − t)

}
e−γx.
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Proof.
In this case the function βt is given by

βt =
1
θ

∫ ∞

0

[
exp {γyeη(T−t)} − 1

]
e−y 1

θ dy.

Then βt is finite if and only if

0 < γ <
e−η(T−t)

θ
, for all t ∈ [0, T ],

which is equivalent to expression (4.37).
Under this condition

βt =
1
η

θγηeη(T−t)

1− θγeη(T−t)

=
1
η

d log
dt

(
1− γθeη(T−t)

)
,

then ∫ T

t
βsds =

1
η

log
(

1− γθ

1− γθeη(T−t)

)
In particular if η = 0 we have

βt =
γθ

1− γθ
,∫ T

t
βsds =

γθ

1− γθ
(T − t).

The proof is complete.

In the exponential case, for η = 0, h0(δ) becomes

h0(δ) =
a2θ

2γ2σ2
δ2 − ((c +

a2

γσ2
)θ +

a2

2γ2σ2
)δ + (c +

a2

γ2σ2
− θλ). (4.38)

For each γ ∈ (0, 1/θ) we obtain a positive root δ(γ) of h of the form

δ(γ) =
cσ2γ2

a2
+ γ +

1
2θ

+

√(
cσ2γ2

a2
+ γ +

1
2θ

)2

− 2
θ

(
(c− λθ)σ2γ2

a2
+ 1

)
.

5. Numerical examples

In order to illustrate the behavior of the ruin probability for infinite horizon when the optimal
strategy of investment πt = a

γσ2 is applied, we present some numerical results for the case where the
claims are exponentially distributed, with the parameter values used by Hipp and Plum, see [HP00],
and for different values of γ ∈ (0, θ). The parameters have the following values: a = σ = θ = λ = 1,
c = 2, and η = 0.
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Graph 1

Graph 1 shows how the root δ(γ) of h0(δ) varies for different values of γ. For our data the
Lundberg parameter for the classical case δ1 is 0.5. The maximum value of δ∗ is obtained at
0.640388 and for γ ∈ (.25, .9] the root is larger that 0.5.

Let

St =
Nt∑
i=1

Yi − ct−
∫ t

0

a2

γσ2
dr −

∫ t

0

a

γσ
dBr, (5.39)

denote the surplus; observe that St = z−Xt. Let τ(z) = inf0≤t<∞{t > 0|Sτ > z}, we are interested
on estimating

P [τ(z) < ∞] = E(11τ(z)<∞).

We use a Monte-Carlo method with importance sampling to estimate the ruin probability. These
problems can be handled if we change the probability measure to one that increases the probability
of occurrence of {τ(z) < ∞} (via importance sampling). Asmussen ([Asm00], chapter XI) used an
exponential change of measure for the classical case. In our case, we propose the probability P ∗

obtained from P by the Radon-Nykodin derivative

dP ∗

dP
= eδSτ(z)−τ(z)h0(δ),

where h0(δ) is given by (4.38). If we choose as δ, the root δ∗ of h0, the calculation of the ruin
probability reduces to

E(11[τ(z)<∞]) = E∗(e−δ∗Sτ(z)11[τ(z)<∞]).

With this method we obtain a considerable reduction of the variance (which implies a lesser number
of paths for Monte-Carlo). When δ = δ∗ the estimation is optimal in an asymptotic sense, and for
variance reduction, the variance is bounded by e−2δ∗z.

Graph 2 compares the probability of survival, for values of z ∈ [0, 6] for γ = .9, γ = 0.640388,
γ = 0.3 and when there is no investment. As it can be seen, the ruin probability is almost the
same for the first two cases, but we need to invest in the risky asset a smaller amount of money for
γ = .9.
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